
Based on CIROS v7.1.7

© 2022 - Festo Didactic SE. BD-AR \ Hoi Yee Cheang 01.12.2022

CIROS Festo CP-System User Manual

Can be used for v6.4.6 and v7.0
with few variations.

• Overview
• Installation
• License
• Application Scenarios
• Help Menu
• Keyboard Shortcuts
• Options Setting
• Window’s Size

• Collaborative Working

• Model’s Structure

• Elements and Coordinate Systems

• Create a Model

• Window’s Layout

• Toolbar

• View and Edit Mode

• Standard Views

• View Used when Creating CIROS Model

• Snapping into Place

• Floor and Background

• Import and export data

• Teacher mode

• Simulation Control in Model Window

1. Introduction to CIROS (→) 2. Introduction to CIROS Model (→)

2

Content

• Building Blocks

• Product

• Terms and Definitions

• Standard Part Numbers

• Group and Utilities

• Carriers

• Resources and Buffers

• Open Model Libraries Window

• Model Library Festo CP System

• Configuration in Properties Section CP System

• Sources and Sinks

• Adding New Libraries to CIROS

3. Introduction to Festo CP-System (→) 4. CP-System Model Libraries (→)

3

Content

• Steps to Virtual Commission with MES4

• Steps to Virtual Commission with FactoryViews

• Steps to Virtual Commission with Robotino

• Synchronise CIROS Parts in Storage with MES4 Buffers

• Running CIROS and MES4 on Different PCs

• Running CIROS and Fleet Manager on Different PCs

• Terms and Definitions in MES4

• MES4 Communication Interface

• Terminology in MES4 Messages

• MES4 Service Requests

• Festo MES4 Interface

• Use Case: Update Resource Status with MES Controller

• Message Request from CP System to MES4

• MES Communication Flow Chart

• Message Request from CIROS to Fleet Manager

• Scenario Overview

• Process Summary

• Preparing a CIROS Model

• Starting a PLCSIM Instance

• Creating the Hardware Configuration and IO Tags in TIA Portal

• Configuring the Interface

• Common Issues

• Remote Connection between CIROS and PLCSIM Advanced

5. Virtual Commissioning with MES4 (→) 6. Virtual Commissioning with Soft PLC (→)

4

Content

• Simulation Kernel

• Reduce Simulation Computing Requirement

• Code Sequence Trace

• Visualising Sensor Data

• Data Logging

• Simulation Control in CP System

• Python in Model Libraries

• Python Installed but Not Working

• Python Scripts in CIROS

• Built-In Function List

• CP System Construction Helper

• Use Case: Common TCP/IP Communication

7. Simulation (→) 8. Python (→)

5

Content

• CIROS as OPC UA Client • Mitsubishi Industrial Robot
• Layout and Windows
• CP-F-RASS
• Steps to Configure CP-F-RASS for Simulation
• Steps to Simulate CP-F-RASS
• Simulate Real Robot Program in CP-F-RASS Model
• CP-F-RASS Robot Programming
• Move Robot Manually
• Mount and Release a Gripper Manually
• TCP Tracking
• View TCP Coordinate
• Robot Workspace
• Collision Detection
• Connect to Robot Controller
• Online Information from Robot Controller

9. OPC UA Interface (→) 11. Robot Programming (1) (→)

6

Content

• Create / Load Robot Controller Backup
• Upload / Download Robot Programs
• Online Teach-In
• Get Actual Robot Data with Built-In Python Function

• Setting Up VR Glasses

• Interact with Model

11. Robot Programming (2) (→) 12. VR (→)

7

Content

• Move I/O Address
• Export as High-Resolution Images
• Multiple View Windows
• CIROS Starter
• Model Analysis
• CIROS Part Number for CP System
• Steps to Create Own Part
• Steps to Create Own Model Library
• Steps to Create Own Virtual Machine Communicating with MES4

• External document “CIROS-CP_Troubleshoot_EN_v7.1_xxxxxx.pdf”

13. Advanced (→) 14. Troubleshooting (→)

8

Content

Introduction to CIROS

• Powerful, kinematic real-time 3D simulation

• Time-discrete simulation kernel (update every 40ms)

• Large model library: not only CP Lab / Factory, but also >1000 robots

from various manufacturers

• CAD import for user-defined modules / kinematics

• Several interfaces, e.g. to MES4, Fleet manager, Matlab, Python, VR

glasses, Mitsubishi robots, …

• User interaction during simulation

• Collision analysis

• Fault injection / simulation

• PLC and robot programming

• Online help with introductory examples

CIROS – Computer Integrated RObot Simulation

10

Overview

• CIROS Studio

• Full version including all features

• Designing and saving models from scratch

• RCI explorer interface to Mitsubishi robot controllers

(download/upload of programs, individual step tracking)

• Fits perfect for preparation of teaching scenarios to be

analyzed by students

• CIROS Education

• Limited functionality

• Already existing models can be analyzed & modified, but not

saved

• No RCI explorer interface to Mitsubishi robot controllers

• Fits perfect for scenarios, in which CIROS studio models have

to be opened, analyzed, and modified only

Studio vs. Education

11

Overview

• CIROS Studio and Education are two different software

products.

• Depending on the license key one is allowed to start CIROS

Studio and/or Education.

• Installation of different CIROS releases & language packs on a

single PC possible.

• Unfortunately, the desired language must be set during

installation (there is no option to change the language during

runtime) .

Language packs & software releases

12

Overview

13

Hardware requirements

Overview

• Either USB port for USB dongle or network access for server-based licensing

• Officially supported operating system: Windows 10

• Hardware requirements

• High-performance CPU, i.e. Intel i5/i7

• At least 8 GB main memory

• At least 4 GB SSD memory

• NVIDIA graphics card with OpenGL 4.5 support and 4 GB dedicated memory

• When using CIROS in combination with other software (e.g., MES4, PLCSIM Advanced) two screens are highly recommended!

• It is also possible to run CIROS and other software (e.g., MES4, PLCSIM Advanced) on different PCs

• Open Start.exe and select CIROS Applications.

14

Installation

• Select either CIROS Studio or CIROS Education to be installed.

15

Installation

License is managed by CodeMeter.

16

License

List of USB dongles currently attached to the system.

1

2

Option 1 Option 2

17

View local licenses in CodeMeter WebAdmin

Right mouse button opens context menu.

18

Note: All CIROS related licenses should be placed in the same container.

CodeMeter WebAdmin

List of licenses
stored on the
attached USB
dongle.

19

Allowing CodeMeter WebAdmin to act as a server.

Licenses from Server

1

2

3

20

Connecting to a CodeMeter WebAdmin server. (1)

Licenses from Server

1

2

21

Connecting to a CodeMeter WebAdmin server. (2)

Licenses from Server

3

Enter IP address of the PC acting as a server.

4

22

Connecting to a CodeMeter WebAdmin server. (3)

Licenses from Server

5

23

Connecting to a CodeMeter WebAdmin server. (4)

Licenses from Server

Refresh to see the available servers.

24

Application Scenarios

Large Classrooms

OPC UA

Python

Robotics

CAD Import

Virtual Commissioning

Process Optimisation

PLC Programming

Virtual Reality

Video Export
Fault Injection

Data Generator for Data Analytics

25

Process optimisation

Application Scenarios

• Assume following process: Front cover →Measuring → Back cover → Pressing → Heating → Delivering

• Which of the two configurations below is more efficient?

Heating Pressing

Delivering

Measuring

Front
cover

Back cover

Delivering Heating

Pressing

Front
cover Back cover

Measuring

26

PLC programming (example with Siemens PLC)

Application Scenarios

Real PLC

PLC programm

Soft PLC

EasyPort

EzOPC

27

Help Menu

• Detailed help system with a couple of introductory examples, but not focusing on CP Lab / Factory explicitly.

1

2

SHIFT + left mouse button Move user perspective in view mode

CTRL + left/right mouse button Rotate user perspective in view mode

+ / - Zoom in / zoom out

V / H Front / rear view

A Top view

R Right view

L Left view

SHIFT + O Full screen

F5 Start / stop simulation

CTRL + F5 Reset simulation

CTRL + E Toggle between view (default cursor) and edit mode (crosshair cursor)

CTRL + . / CTRL + , Rotate selected object by +/-90° in edit mode

CTRL + T Show model explorer

CTRL + F9 Compile robot / PLC programs

CTRL + SHIFT + M Show model libraries

28

Keyboard Shortcuts

29

Options Setting

• CIROS has two option settings, application options and model options. There are for different configurations

• Application options configure the whole CIROS application, regardless of the models.

• All changes made in model options are only applied to the active model.

• Define data import and export

• General display settings

• Frequently used to reduce computational load.

• Editor settings

• Warning options for modelling and transport

• ORL

• Position and paths

• Programming tools settings

• VR devices configuration

• Workspaces

File → Application options

30

Application Options

• Collision detection

• Model display settings
• Background

• Floor

• Sensors

• Etc.

• Fault simulation in teacher mode

• Interfaces
• MES4

• Fleet Manager

• Data logging

• Model explorer settings

• Modelling

• Online management for Mitsubishi robots

• ORL

• Overlays

• Model Simulations

• Video recorders

Settings →Model options

31

Model Options

• Structure and elements of models

• Modell Explorer: Modelling →Model Explorer or Ctrl+T

• Often used

• Properties of elements in the model

• Properties: Modelling → Properties or Alt+Enter

• Assistant

• For example Settings → Collision detection

• Often used

• Properties of model

• Model options: Settings →Model options or Ctrl+I

• Used fairly

• Properties of CIROS program

• Application options: Files → Application options or Ctrl+Shift+I

• Seldom used

32

Where to look for the options?

33

Window’s Size

• Windows size for Application Window and Modell Window can be adjusted.

Introduction to CIROS Model

• Preliminary remark: Each CIROS model not only consists of the

modx/ini files but also the folders CF and Textures, storing the

internal PLC programs and textures

• It is highly recommended, to store each CIROS model in a

separate folder!

• Important: Do not copy the modx/ini files only, but the entire

folder containing the subfolders CF and Textures, too!

35

CIROS Model

A CIROS project folder:

• Several users can work on the same model at the same time.

• When a user changes the model, other users will receive a notification.

• However, simultaneous changes and changes that crossed over time cannot be merged together.

36

Collaborative Working

• Structures of elements

• Model / Environment

• Objects: Logical unit

• Sections: Static body

• Hulls: Geometries

• Positions based on coordinate system

• Hulls

• Geometric primitives

• Box,sphere, etc.

• Polyhedron

• Vertex, Facet

Elements in a model

37

Model’s Structure

Model

Object

Section

Hull

• Objects in the structure tree

• Placed on the highest hierarchy in the model or

• Placed under an object

• Object’s nomenclature

• Parent object: superordinate object

• Child object: child of a parent object

• Usage

• For a clear structure

• Definition of static assembly

• Moving child objects

• During modelling: always

• During simulation: only when the object is an object assembly

• Select object → right click → Edit → Assembly

38

Model’s Structure

Model

Object

Object

• Different coordinate systems, each might has same or different origins

• World : based on world coordinate system

• Object : based on coordinate system of the parent object

• Section : based on coordinate system of the section it belongs to

• Hull : based on coordinate system of the hull

• In model window, origin of three axes of coordinate system are shown in different colours.

39

Elements and Coordinate Systems

X

Y

Z

• Recommended way of defining a new CIROS Model

1. Choose FILE → New →Model assistant

2. Specify the model’s name and enable Create a subfolder with the same name as the model.

3. Important: Do not select a robot, these ones are not the ones integrated within CP Lab / Factory! Choose Empty model instead!

40

Create a CIROS Model

1

2 3

41

Window’s Layout

Model explorer

Properties
window

Available model
libraries

View window

Model vs. real
time
If the model time is
printed in red, the
system is not able
to perform the
simulation in real
time.

42

Toolbar can be configured

• Change user perspective onto scene

• Default cursor:

• Place, move, rotate objects within scene

• Crosshair cursor:

View mode Edit mode

43

View and Edit Mode

44

Standard Views

45

Standard Views

Default setting Front view Rear view

Left side view Right side view Bottom view

Top view

• With respect to the z-axis all CP Lab / Factory modules within

the library have been prepared in such a way that

• Conveyor belts, CNC milling stations, robot assembly

stations, warehouses, and Robotinos are placed on the floor

(z = 0mm)

• Carriers, deflections, sources, sinks, and application modules

flush with the conveyor belts’ upper edges (z = 975mm)

• Important

• Switching to Top View ensures that the z-values remain

constant when moving components within the scenery!

• Snapping into place of modules works well in Top view only!

46

View Used when Working with CIROS Model

• When placing application modules onto conveyor belts, it is not

necessary to adjust them as precisely as possible.

• Just putting the phrases Application, CPLab, Modul, etc. on top

of each other is all one has to do!

• Same holds for mounting deflections, docking kits, and so on.

47

Snapping into Place

• Floor can be activated or deactivated.

1. Right click in view window.

2. Check or uncheck Floor.

• Floor’s size and muster can be adjusted.

• Open Settings →Model options → Display → Floor.

• Background can be adjusted.

• Open Settings →Model options → Display → Background.

48

Floor and Background

• It is possible to import a model from CAD data by selecting File → Import.

• Supported formats are as follow:
• 3ds Max

• AutoCAD DXF

• Autodesk

• Blender

• Collada

• IGES

• PointCloud

• STEP

• STL

• VRML

• Wavefront Object

49

Import Data

• It is possible to export a model or selected objects in the model to CAD or picture.

1. To export a whole model, in Model Explorer, select Objects. To export objects in model, select the objects in Model Explorer.

2. Click File → Export.

• Supported export formats are:
• AutoCAD

• For viewing in a web browser (HTML)

• PNG

• IGES

• POV-Ray scene description

• RT toolbox file

• STEP

• STL

• VRML

• Windows bitmap

50

Export Data

• Teacher mode can be activated to configure fault simulation in “Fault Setting “ and “Fault Log” windows.

• Extras → Fault Simulation → Teacher Mode

•

• Password for Teacher Mode is “didactic”.

51

Teacher Mode

• Simulation control buttons can be shown in model window.

• This is to allow simulation control in full screen mode or in VR.

1. Go to “Settings →Model option”.

2. Select “Display → Handling”.

3. In section “General”, activate “Show simulation control”.

4. Click on “ok”.

52

Simulation Control in Model Window

Introduction to Festo CP-System

Base module

Application

Module / Ressource

Carrier

54

Resource

Building blocks

55

Carrier and product

Building Blocks

+ +

Carrier Palette Product

Carrier

Palette
Product

(Smartphone)

56

Product (Smartphone)

Front cover
- Slot for screen
- An opening for Button
- Able to drill holes for screw thread

Back cover

Inlay (optional)
- PCB
- Fuses

Covers are available in
four colours

• Set of all objects, except Robotinos, that are moving around

within a CP Lab / Factory.

• Parts get identified by a unique part number (PNo).

• Six different subclasses.

Parts

57

Terms & Definitions

External production parts Parts not produced by CP Lab / Factory

Production parts Parts produced by CP Lab / Factory

Boxes Transport workpieces from one production facility to
another

Pallets Mounted on top of the carriers

Carriers Move (external) production parts on the conveyor
belts.

Undefined Containing all unknown parts or objects, typically
used to represent faulty parts.

External production part Carrier

Production part Box

PalletUndefined

25
31

Pallet
Carrier

110 / 109 / 108 /
107

Raw material front cover black / grey / blue / red

111 / 112 / 113 /
114

Back cover black / grey / blue / red

210 / 310 / 410 /
510

Front cover black / grey / blue / red

x11 / x12 / x13 /
x14 (x = 2, 3, 4, 5)

Front cover in black / grey / blue / red including
PCB / front fuse / rear fuse / both fuses

1y11 / 1y12 / 1y13
/ 1y14 (y = 2, 3, 4,
5)

Front and back cover in black / grey / blue / red
including PCB / front fuse / rear fuse / both fuses

26 / 120 / 130 Unknown workpiece / PCB / fuse

• Supported part numbers are parts that can be booked into a

high-bay warehouse at simulation time t=0s.

• All other part numbers – in particular user-defined parts – can

be generated and stored into a high-bay warehouse during

production, but not replicated in a warehouse at simulation

startup at t=0s.

Supported part numbers

58

Standard Part Numbers

59

Some examples

Standard Part Numbers

Part number 412

(blue, PCB, front fuse)

Part number 513

(red, PCB, rear fuse)

Part number 1214

(black, both fuses, back cover)

Part number 109

(grey, raw material front cover)

• Groups define sets of parts somehow belonging to each other.

• Besides the list of parts belonging to a group each group also

contains a unique ID and a description.

• There is no restriction on the number of different types of parts

a group consists of.

• Parts can be attached to an arbitrary number of groups or not

attached to any group at all.

• Typically, groups are used to define zones and restrictions wrt.

buffer positions of a high-bay warehouse.

• Utilities defines a special subclass or group of parts, containing

all carriers, boxes, and pallets, which are the ones that are

responsible for transport purposes.

60

Groups and Utilities

Almost Final Products

61

Carriers

• In CIROS two different kinds of carriers are supported

• CP-F-CARRIER: Carriers without Pallets

• CP-L-CARRIER: Carriers including Pallets

• Carriers without Pallets must be used in cases in which a CP Factory high-bay warehouse is part of the CIROS model, since the

workpieces will be stored and released together with pallets in this situation!

• In all other cases Carriers including Pallets should be used

• Rule of thumb according to the number of carriers used within a CIROS model: One carrier per conveyor belt.

• Resources are the production facilities (modules) of the CP Lab

/ Factory.

• Each resource is represented by a unique ID.

• Periodically, each resource sends a status update to MES4 and

gets process data back when initiating a corresponding service

call.

• Robotino is a special kind of a mobile resource.

• Some resources contain buffers, like the high-bay warehouse,

the robot assembly station, Robotinos, and the branches.

• Each buffer consists of at least one buffer position to store

parts, one per buffer position.

• MES4 could be configured in such a way that, based on zones

and restrictions, buffer positions are allowed to store specific

types of parts only.

62

Resources and Buffers

CP-System Model Libraries

64

Modelling →Model libraries

Open Model Libraries Window

• There are four groups containing CP Lab / Factory modules

• For each module there is a brief description and a tiny image.

65

Model Library Festo CP System

Name Description

CP-Application Application modules

CP AR AR Marker for Festo Didactic Augmented Reality

CP Factory CP-Factory based modules and stations

CP Lab CP-Lab based modules

CP Mobile Robots Robotino related modules

CP-Models CP-Lab standard systems with configured
MES4 v1 database

Module Description

CP-AM-CAM Camera inspection

CP-AM-DRILL Drilling

CP-AM-HEAT Heating tunnel

CP-AM-iDRILL Drilling module with own PLC

CP-AM-iPICK Pick by light with own PLC

CP-AM-LABEL Labelling printer

CP-AM-MAG_BACK Back cover magazine

CP-AM-MAG_FRONT Front cover magazine

CP-AM-MANUAL Manual working place

CP-AM-MEASURE Analog measurement

CP-AM-MPRESS Muscle press

CP-AM-OUT Workpiece output

CP-AM-PRESS Pressing

CP-AM-TURN Workpiece flipping

CP Application

66

Model Library Festo CP System

Module Description

CP-AR-GUI CP-AR QR-Code to the AR server.

CP AR

67

Model Library Festo CP System

Module Description

CP-F-ASRS20-B Automated Storage Retrieval System for boxes

CP-F-ASRS32-P Automated Storage Retrieval System for parts and pallets

CP-F-BRANCH Branch base module

CP-F-BUF-B Manual working place with automated box transfer

CP-F-BUFROB-B Part transfer between box and CP-Factory line with robot

CP-F-BUFROBM-B CNC milling application attached to robot and box transfer

CP-F-BYPASS CP-Factory base module with bypass belt

CP-F-CARRIER 15 carriers for CP-Factory base modules without pallet

CP-F-DEFLECTION180 Passive 180° deflection

CP-F-FEEDROBM CNC milling application attached to robot and CP-F linear

CP-F-LINEAR CP-Factory base module with two parallel conveyor belts

CP-F-RASS Robot assembly station

CP-F-SINK Sink to remove carriers, pallets, workpieces

CP-F-SOURCE Source to generate carriers, pallets, workpieces

CP Factory

68

Model Library Festo CP System

New

New

New

New

Module Description

CP-L-BRANCH Branch base module

CP-L-CARRIER 15 carriers for CP-Lab base modules with pallet

CP-L-CONVEYOR CP-Lab base module with a conveyor belt

CP-L-DEFLECTION90 Passive 90° deflection

CP-L-iASRS12-W Automated Storage Retrieval System for parts

CP-L-SINK Sink to remove carriers, pallets, workpieces

CP-L-SOURCE Source to generate carriers, pallets, workpieces

CP Lab

69

Model Library Festo CP System

Module Description

CP-MR-B Robotino for boxes

CP-MR-C Robotino for carriers

CP-MR-DOCK Docking kit to be mounted on branches
to enable (un)docking maneuvers by a
Robotino

CP-MR-PARK Robotino parking position

CP Mobile Robots

70

Model Library Festo CP System

New

New

Module Description

CP Lab 404-1 Standard CP Lab system with four stations and configured MES4 v1
1. Front cover magazine
2. Analog measurement
3. iDrill
4. Workpiece Output

CP Lab 406-1 Standard CP Lab system with six stations and configured MES4 v1
1. All modules in CP Lab 404-1
2. Back cover magazine
3. Pressing

CP Lab-408-1 Standard CP Lab system with six stations and configured MES4 v1
1. All modules in CP Lab 406-1
2. Pick by light
3. Labelling

CP Lab 410-1 Standard CP Lab system with six stations and configured MES4 v1
1. All modules in CP Lab 408-1
2. Camera inspection
3. Turning

SAP4School Model for virtual commissioning of SAP4School

CP-Models

71

Model Library Festo CP System

• For almost all components there is a section CP System as being part of the

corresponding Properties menu.

• Represents the options that can be defined at the HMIs of a real CP Lab / Factory

• MES ID

• Traffic jam control

• Energy saving (stopping the belts whenever possible)

• Behavior of branches

• Additionally, one can configure some CIROS internal parameters not available on a

real CP Lab / Factory.

72

Configuration in Properties Section CP System

• MES ID = 0 → Default mode without using MES4

• MES ID > 0 →MES4 mode

• Note, that the default mode of CIROS is not equal to the default

mode of a real CP Lab / Factory!

• If the MES ID of at least one component is greater 0, running

the CIROS simulation without MES4 results in an error

message!

Define MES ID (1)

73

Configuration in Properties Section CP System

• Typically, MES ID is defined with one of the two ideas below:

• Based on the MES IDs of a similar real CP Lab / Factory.

• According to the default process to be performed, starting

with MES ID = 1 for the component which is executing the

first step of the process.

• Constraints

• MES IDs must be unique throughout the entire model .

• Each MES ID must be greater 0.

• Definition of IDs within CIROS and MES4 must match each

other.

Define MES ID (2)

74

Configuration in Properties Section CP System

1. Configure axis lower limit, upper limit and maximum velocity.

1. In Model Explorer, select CP-AM-iDRILL→Mechanik.

2. In Properties, select Axes → Axis parameters.

3. Adjust Lower limit, Upper Limit and Max. velocity.

Configure x-axis linear drive

75

CP-AM-iDRILL

2. It is possible to see the position of the drill bit in model window.

1. In Properties, select Axes → DH parameters.

2. By dragging the scale XAchse at bottom, the drill bit will move accordingly

1.1

1.2

1.3

2.1

2.2

• The object Mechanik has type Mechanism. It is a double acting

cylinder.

• Object type double acting cylinder in CIROS has following

attributes, which can be assigned to I/O. By default, following

attributes are connected.

• The attributes can be viewed in CP-AM-iDRILL→Mechanik →

Section XAchse→ Properties →Mechanism.

Object Mechanik (1)

76

CP-AM-iDRILL

Note: Terms might varies in different language.

• It is possible to assign own I/O to the attribute.

• In this example, An analog output ActualXPosition is assign to the

attribute Actual position.

1. Add a new analog output with name ActualXPosition in object

Mechanik.

2. In Model Explorer, select CP-AM-iDRILL→Mechanik→ Section

XAchse.

3. In Properties, select Mechanism.

4. In Attribute table, select the row Actual position [output].

5. Click on the drop down list at the bottom, select ActualXPosition.

6. Click Apply.

Object Mechanik (2)

77

CP-AM-iDRILL

1

3

5

Property Description

Working time (s) Working time required by the worker
to finish an operation (valid for
CIROS and CIROS/MES4).

Target number Part number of the part to be
replicated by the worker (valid for
CIROS default mode only).

Configuration in properties section CP System

78

CP-AM-iPICK

Properties Description

Automatic Mode In “Automatic Mode” the magazine
will be filled automatically during
simulation.

Colour Workpiece Defines the color of the back covers
stored in the magazine. By enabling
“Manual Override” the user can
specify the color of each individual
cover to be replicated.

Configuration in properties section CP System

79

CP-AM-MAG_BACK

Properties Description

Automatic Mode In “Automatic Mode” the magazine will be filled
automatically during simulation.

Colour Workpiece Defines the color of the front covers stored in the
magazine. By enabling “Manual Override” the user
can specify the color of each individual cover to be
replicated.

Workpiece Defines the front cover type, is it a raw plastic
block, front cover without drilled holes or final
front cover.

Percentage Rotated
Workpieces

Fault injection option, defines percentage of faulty
part filled to the magazine.

Configuration in properties section CP System

80

CP-AM-MAG_FRONT

Default
orientation

Rotated
orientation

Properties Description

Working time (s) Working time required by the worker to finish an
operation (valid for CIROS and CIROS/MES4).

Target number Part number of the part to be replicated by the
worker (valid for CIROS default mode only).

Percentage Faulty
Fuses

Fault injection option. In case the worker must
replicate workpieces with fuses, one can specify
the percentage of “faulty” fuses assembled (faulty
fuses are highlighted in red) .

Percentage Rotated
Workpieces

Fault injection option. Percentage of workpieces
placed in a rotated orientation (upside down).

Configuration in properties section CP System

81

CP-AM-MANUAL

Default
orientation

Rotated
orientation

Faulty fuses are
shown in red

Properties Description

Measurement Variation Fault injection option, adds some random
“noise” with Gaussian filter to the measured
value.

Configuration in properties section CP System

82

CP-AM-MEASURE

Properties Description

Automatic Mode In “Automatic Mode” workpieces will be removed
from the ramps automatically during simulation.
Otherwise, one might run into a traffic jam due to
slides full!

Configuration in properties section CP System

83

CP-AM-OUT

Properties Description

Gripper Position Before starting the simulation, one must specify
whether front covers or entire workpieces (i.e., front
& back covers pressed together) should be rotated
upside down.

Configuration in properties section CP System

84

CP-AM-TURN

Properties Description

Traffic Jam Stop carrier if conveyor belt is occupied.

Conveyor Belt Stop conveyor belt while application is running.

Behaviour of
Carrier Shunt

Percentage of carriers without an order turning to the
right.

Configuration in properties section CP System

85

CP-F-BRANCH / CP-L-BRANCH

Properties Description

Traffic Jam Stop carrier if conveyor belt is occupied.

Conveyor Belt Stop conveyor belt while application is running.

Behaviour of
Carrier Shunt

Percentage of carriers without an order turning to the
right.

Automatic Mode In automatic mode PCBs in the box will be created
automatically regardless of buffer in MES4.

ID for the box If the box is not created by MES, this will be the ID of
the box.

Percentage
Faulty Fuses

Percentage of “faulty” fuses assembled by the robot
assembly station. Faulty fuses are highlighted in red.

Configuration in properties section CP System

86

CP-F-RASS

Properties Description

RFM ID Unique ID, mandatory for the Festo Fleet Manager to
get access to a particular Robotino .

Configuration in properties section CP System

87

CP-MR-C / CP-MR-B

Note:

• CP-MR-C stands for Cyberphysical-Mobile Robot-Carrier.
• CP-MR-B stands for Cyberphysical-Mobile Robot-Box.
• RFM stands for Robot Fleet Manager.

Properties Description

Station ID Unique ID, mandatory for the Festo Fleet Manager to
differ between the various docking positions a
Robotino could dock to within a model.

Dock position Number of conveyor belts available for exchanging
workpieces (always 1 for carrier Robotinos).

Configuration in properties section CP System

88

CP-MR-DOCK

• Sources and Sinks can be used to dynamically replicate and

remove workpieces during the simulation, either via pushing

the corresponding button or automatically controlled by CIROS.

• There are different versions of sources and sinks, one set to be

applied to CP Lab conveyor belts and one set to be used in

combination with CP Factory components.

• Typically, sources and sinks come into play whenever one

wants to model a single conveyor belt & application module.

89

Sources and Sinks

90

Remarks

Sources and Sinks

• Depending on the model, sources and sinks may have to be rotated to operate correctly!

Rotated by 180°

Rotated by 90°
counterclockwise

Rotated by 90°
clockwise

Not rotated

Properties Description

Automatic Mode If enabled carriers / pallets / workpieces within the
range of the sink will be removed automatically
during simulation.

Configuration in properties section CP System

91

Sources and Sinks

1. Open an already existing model or create a new CIROS model like

shown before.

Note: Model libraries window can only be opened when a CIROS model is opened

or created!

2. Open the model libraries window

• MODELING →Model libraries or

• CTRL + SHIFT +M

3. Click on the right mouse button within the tree view part of the model

libraries to open the corresponding context menu

4. Execute Add folder to list…

5. Select the folder in which the model library to be added is stored and

press OK

92

Adding New Libraries to CIROS

Basic knowledge in Festo MES4 and Fleet Manager is required.

Virtual Commissioning with MES4

94

MES4 v2 and below

Virtual Commissioning with MES4 Tutorial

1. Create a new CIROS project.

Video tutorial: 10_CreateNewCIROSModel.mp4

2. Build a CIROS model from model libraries.

Video tutorial: 11_BuildAModelFromModelLibraries.mp4

3. Configure MES4.

Video tutorial: 12_MES4ForCirosModel.mp4

4. Configure CIROS model respective to the MES4 configured.

Video tutorial: 13_ConfigureCirosModelForMES4.mp4

5. Run the simulation

Video tutorial: 14_SimulateAnMES4Order.mp4

95

1. Create a new CIROS project.

Virtual Commissioning with MES4 Tutorial

1. Choose FILE → New →Model assistant

2. Specify the model’s name and enable Create a subfolder with the same name as the model.

3. Important: Do not select a robot, these ones are not the ones integrated within CP Lab / Factory! Choose Empty model instead!

1

2 3

96

2. Build a CIROS model from model libraries.

Virtual Commissioning with MES4 Tutorial

1. Switch to Top View within the list of views.

2. Open the model libraries.

3. Select all modules needed and add them to the model.

Note: take care, that components properly snap into place.

4. After adding all modules, select each passive deflection and snap it into place again!

5. Depending on the model,

1. Integrate sources and sinks if required.

2. Adjust floor and background.

3. Disable shadow simulation

97

3. Configure MES4.

Virtual Commissioning with MES4 Tutorial

1. According to the CIROS model add all resources in MES4.

• Application modules and Robotino.

• CP Lab branches (Remark: CP Factory branches are defined implicitly by the MES4 topology) .

• Define the MES4 ID, IP address, type of PLC (i.e. Siemens) of each resource.

• Specify the system’s topology.

2. Start the CIROS simulation and check in MES4 Production Control → Resources whether all resources are available and active.

3. Define all parts that are required by the various work plans.

4. Add work plan(s).

5. In case a high-bay warehouse is part of the model, specify the initial load of the corresponding buffers.

6. Clear all other buffers (branches, Robotino!).

7. Start a production or customer order and check that everything works fine.

Picture source: MES4 v2 or lower

98

4. Configure CIROS model respective to the MES4 configured.

Virtual Commissioning with MES4 Tutorial

1. Configure the CP System options for each component.

1. MES ID in CIROS should be the same as Resource ID in MES4.

99

Import Model from Python Script

Virtual Commissioning with FactoryViews[1]

• Python script to generate model with configured MES4 resource ID can be generated from Festo Factory View, which is the successor

of Festo MES4 Software.

• The script can be executed in CIROS to configure the CP System setup for virtual commissioning.

• With this option, time to insert the models and to configure the resource IDs is saved.

• However, the carriers are not generated from the code. Thus, they have to be added manually from Festo CP System Model Library.

[1] FactoryViews is the new software bundle for MES and web based services. It contains MES4 v3.

1. Create a CIROS model.

2. Select Extras → Python → Execute.

3. Select the python script generated, for example, from Factory View, and click

open.

Note: Last python script can be executed again by selecting Extras → Python →

Execute Again or shortcut key Ctrl+Shift+W.

4. Go to top view or shortcut key A.

5. Open Model Library or shortcut key Ctrl+Shift+M.

6. Insert carriers and delete extra carriers.

7. Snap the remaining carriers in place.

8. The model is ready.

Hint:

• In the python script exported from FactoryViews, the modules are snapped in place and MES

ID of the resources are set.

• To reduce graphic power consumption and avoid crash, close all windows and minimize

Model Window before loading the script.

Guide to import model from python script

100

Virtual Commissioning with FactoryViews[1]

[1] FactoryViews is the new software bundle for MES and web based services. It contains MES4 v3.

• Note: MES4 is not communicating with Robotino(s) directly!

• Communication is carried out via the Fleet Manager.

• MES4 is just sending transportation orders like “Go to position

A, grab a workpiece, move to position B, and release the

workpiece over there” to the Fleet Manager

• Fleet Manager itself selects one of the available Robotino(s)

and sends commands like “dock to position A” to the Robotino

to fulfill the MES4 order.

101

Virtual Commissioning with Robotino

MES4 Fleet Manager

102

Virtual Commissioning with Robotino

Robotino CP-MR-C

Docking kit CP-MR-DOCK

Videos tutorial: 21_ConfigureFleetManagerForCiros.avi

103

Fleet Manager v3 and above

Virtual Commissioning with Robotino

• Option Fleet Manager used with CIROS must be activated.

• Start simulation

1. Start MES4, CIROS, and Fleet Manager in any order, but do

not start the CIROS simulation yet.

2. In Fleet Manager, if the server is not started, start the

Robotino server via the Start Server button.

3. Start the CIROS simulation.

4. Fleet manager: Select all available Robotinos and switch

them to Automatic.

5. Place your MES4 orders.

Videos tutorial:

01_StartUpRobotino.mp4

22_SimulationOfRobotino.avi

• Stop simulation

1. Stopping simulation in CIROS.

2. Reset the CIROS simulation to t=0s.

3. Fleet manager: Stop the Robotino server via Stop Server.

Note: Server must be stopped!

4. MES4: Clear all Robotino-related buffers.

Simulation with CIROS, MES4 and Fleet Manager

104

Virtual Commissioning with Robotino

• During the initialization phase of a CIROS simulation run,

CIROS will ask for the buffer contents of high-bay warehouses

automatically .

• But, whenever the buffer of a high-bay warehouse has changed

within the MES4 while the CIROS simulation is running, one

must click the MES 4 button in CIROS view window to transmit

these changes to CIROS.

105

Synchronise CIROS Parts in Storage with MES4 Buffers

106

CIROS → Settings →Model Options

Running CIROS and MES4 on Different PCs

Address = IP-Address of PC
which MES4 is running.

107

CIROS → Settings →Model Options

Running CIROS and Fleet Manager on Different PCs

Address = IP-Address of PC
which Fleet Manager is running.

• MES4 maintains a list of registered customers which are

allowed to place customer orders.

• Each order has a unique order number (ONo) and may consist

of a couple of different products and parts to be produced.

• Each production part within an order has its own order position

(OPos), ranging from 1 up to the total number of parts of a

particular order.

• (ONo, OPos) is a unique representation of an individual part.

Customers, orders, order number & order position

108

Terms & Definitions in MES4

Picture source: MES4 v2 or lower

• Operations define the functionality of a production step and are

executed by resources.

• But, MES4 separates between operations and resources, since

there might be several resources able to perform the same type

of operation, i.e., operations are not sub-objects of resources

but allocated to them.

• Vice versa, some resources can execute more than just one

operation.

• Each operation has its own unique ID (OpNo) and might have

no, one or even quite several parameters to adjust the

production step.

Operations and parameters

109

Terms & Definitions in MES4

Picture source: MES4 v2 or lower

Picture source: MES4 v2 or lower

• The resources send a status update to MES4 in every second.

Cyclic status message Service requests

110

MES4 Communication Interface

• Resources or other applications query data from MES4 or write

data to MES4.

Resource

SPS

Port
2000

MES4

Resource

SPS

Port
2001

MES4

Term Meaning

BoxID Box ID

BoxPNo Box part number

BoxPos Position in box

BufNo Buffer number

BufPos Buffer position

ONo Order number

OPos Order position

Op Operation

OpEnd Operation end

OpNo Operation number

111

Terminology in MES4 Messages

• MES4 offers many services that are required for the operation

of a plant.

• None of the plants use all services, but all services are

available at any time and can be called not only by PLCs but

also by other business applications via a TCP/IP connection. In

addition, a skilled operator can implement additional services,

if they can be mapped to an SQL query of theMES4 database.

• Service calls always follow the request response paradigm, i.e.,

a client sends a call and MES4 response back.

• Internal controller of CIROS model is the virtual representation

of PLC. Thus, it communicates the same way as a real PLC.

112

MES4 Service Requests

Client

MES4

Request

Response

• Services are uniquely identified by two characteristics:

• MClass (service class)

• MNo (service number)

• The MNo is only unique within an MClass. This means that the service

with MClass 100, MNo 6 is different from MClass 150, MNo 6.

• They also have a name, but this is of no relevance to the client or to

MES4. It is only used for recognition by humans.

• All the messages available can be seen in MES4

• Tools → Com. Simulator

• The messages can be edited

• MES4 → Tools → Config SQL

• Note: Only Administrator can access Config SQL

• Administrator’s password is SolutionCenter

MClass MNo Name

100 6 GetOpForONoOPos

100 33 GetStepDescription

101 20 OpEnd

150 5 GetBufPos

Message classification Example:

113

MES4 Service Requests

• Service classes on the right are frequently used. For user

defined services, any other classes can be used.
MClass Description

100 Get information from orders and work plans

101 Write information to orders and work plans

110 Request topology related data

150 Request buffers and utilities (incl. boxes) status

151 Write buffers and utilities (incl. boxes) status

200 Request logistic and Robotino information

201 Write logistic and Robotino information

Classes

114

MES4 Service Requests

Header

• Defined in HeaderGet.xml

Standard input parameters

• Defined in HeaderGet.xml

Service specific parameters

• Defined in MES4 DB

Header

• Defined in HeaderSend.xml

Standard output parameters

• Defined in HeaderSend.xml

Service specific parameters

• Defined in MES4 DB

Message packet overview

115

MES4 Service Requests

Request Response

116

Data coding

MES4 Service Requests

• MES4 allows two different encoding procedures for service requests and responses.

• The first three or four bytes of each packet are TCP Ident header, which indicates which method the packet uses.

• Binary coding

• Binary coding is primarily used for communication with PLCs on which it is fundamentally easier to handle fixed-address binary data than strings.

• In the binary procedure, a distinction is still made between the Siemens format and the CODESYS format. MES4 also responds to each binary-coded

request in the binary procedure of the same format.

• String coding

• Well suited for implementation in high-level languages or for manual tests. Parameter names and values are transmitted in human-readable form.

• The string procedure also has two forms.

• The complete format can be used for both calls and responses.

• The abbreviated format is only used in MES4 responses if this was requested in the call. was requested.

• The communication between the MES4 and the CIROS model

requires an object of type MES in the CIROS model.

• A corresponding object named MES Controller can be found in

the CIROS model library Festo MES.

• The MES object from the model library already has all required

communication inputs and outputs. Those inputs and outputs

shall are only be used for external communication and should

not be connected to other inputs or outputs in CIROS.

117

Festo MES4 Interface

• The communication with the MES object inside CIROS is exclusively done via IRL functions. These functions are provided by a

program named MES_commands.irl which is automatically added to a Programs subfolder of your model folder when you add the

MES object. The required functions can be made accessible in your own IRL program by stating FROM MES_commands IMPORT ALL;

• By default, the MES4 interface uses field definitions from the HeaderSend.xml file in the CIROS root directory. If you need own field

definitions, these can be configured in the model options. After configuring field definitions, go to the MES property page of the MES

object and press the Create compatible IO button to create the required object inputs and outputs.

118

Festo MES4 Interface

individual ID of the MES object

big / little endian

log the communication messages to the messages window

creates the required inputs and outputs based on the configured field definition file

• At the end of this tutorial, user is able to update to MES4 that the resource is in Automatic, MES mode when simulation starts.

1. Create a CIROS project.

2. In Model Libraries, insert following:
1. Festo MES \ MES controller.

2. Controllers \ Simulation controller

3. Open Project Management window.
1. Create a new project in Industrial Robot Language (IRL) in location <project folder>\Programs. Name it ResourceState.prjx.

2. Assign the project to controller MES_Controller.

3. Add MES_commands.irl in the project.

4. Create a new program. Name it ResourceState.irl. Make it main program.

5. Program ResourceState.irl as in next page.

6. Save and compile the program.

7. Save the project.

8. Run simulation and observe in MES4 Production Control \ Resources.

119

Use Case: Update Resource Status with MES Controller

120

ResourceState.irl

Use Case: Update Resource Status with MES Controller

PROGRAM ResourceState;

FROM MES_commands IMPORT ALL;

BEGIN
{Initiate MES status}
setStateMESMode(true);
setStateAuto(true);
setStateReset(false);
setStateError(-1);

ENDPROGRAM

121

Steps in screenshots

Use Case: Update Resource Status with MES Controller

1

2

3

4

5

6

7

8

9

122

Steps in screenshots

Use Case: Update Resource Status with MES Controller

10 11 12

13

• CIROS behaves the same as PLC in terms of MES4

communication. Thus a bit coding is used.

• The messages are written in IRL format and can be found in

Project Management.

1. In toolbar, open Programming \ Project Management.

2. In Project Management window, if not yet exist, add following

project.

• <project folder\CF\CPSystems\CPSystem_Allgemein.prjx>

3. Open Projects \ CPSystem_Allgemein(IRL) \ Files.

123

Message Request from CP System to MES4

124

Example: CP-L-CONVEYOR

MES Communication Flow Chart

SPS_A main program

• CPSystem_Allgemein.irl

Lab conveyor ID
•CIROS_Serie_ID at AI97 = 1
•CIROS_GM_ID at AI98 = 0
•CIROS_App_ID at AI99 = 0

CPLab.irl

• Function CPLab
•Wait for E-stop

Function
CPLab_Linearmodul

• Start the belt
• Wait RFIDInventory = 1

MES_Com.irl
•Function
checkForWorkInThisStation
•If Resource ID = 0, standard
mode

•If Resource ID > =, MES mode

Start communications
•GetOpForONoOPos

MES_Com.irl

• Function callApp
•OpStart

Applications.irl

• Function App
•start the corresponding
app

OpEnd

• Write info of next
operation

125

Message Request from CIROS to Fleet Manager

• Like PLC, CIROS Robotino model is the virtual representation of real Robotino. Thus it communicates with Fleet Manager the same

way as a real Robotino.

• The communication messages are written in IRL format and can be found in CIROS → Programming → Project Management →

Projects →RFM_MR.

• Note: RFM = Robot Fleet Manager, MR = Mobile Robot

Basic knowledge in PLC programming and TIA Portal is required.

Virtual Commissioning with Soft PLC

127

Scenario Overview

• Program your PLC against a virtual mechatronic model

• No risk to your hardware if students make mistakes in program code

• Program modules that you don‘t physically own or let dozens of students program the same module even if you only own it once

All on single PC Software on different PCs

128

Scenario Overview

129

Process Summary

1. Prepare a CIROS model with the hardware you want to program

2. Create your hardware configuration and I/O tags in TIA Portal

3. Create a PLCSIM Advanced instance and download the hardware configuration

4. Configure the interface between CIROS and your instance

5. Start programming!

Important:

• CIROS v7.1 is only compatible with Siemens PLCSIM Advanced v3.0 or above!

• CIROS v7.0 or below is only compatible with Siemens PLCSIM Advanced v2.0 or below.

• Two approaches are possible:

1. Create a model from scratch

• Maximum flexibility

• Program any CP station you like

2. Load a premade model from the model library

• Get started quickly with minimum effort

• Limited selection of CP systems available

130

Preparing a CIROS Model

131

Preparing a CIROS Model

Your model usually needs three basic elements to serve for virtual
commissioning with PLCSIM Advanced:

• The mechatronic system you want to program

• A source and sink to generate and remove carriers with parts

• A SimController so CIROS is able to simulate your model

132

1. Create a new empty model.

2. Add your mechatronic system from the model library.
For this exercise, add a CP-L-CONV.

3. Add a source and sink from the model library that matches your system.
For this exercise, add a CP Lab source and sink.

4. Connect the source and sink to your CP Lab module.

5. Switch the PLC in your CP Lab module (it’s named SPS_A) to PLCSIM Advanced mode.

Preparing a CIROS model from scratch

Exercise

133

Feel free to choose any PLCSIM Advanced settings that work for you.

The only setting relevant to CIROS is the instance name. Choose one
you like and remember it. You’ll need it later.

Some recommendations:

• For Online Access, choose PLCSIM unless your simulated PLC
needs to communicate over the network. This mode makes the
connection to TIA Portal effortless

• Leave Time Scaling off. CIROS has its own time scale and will
make sure the PLC keeps track if you speed up the simulation
beyond real-time

• Choose ET 200SP for PLC type as that matches the physical PLC in
most CP hardware systems

Starting a PLCSIM Instance

134

You can configure your PLC in any way you like.

Ideally, it should have at least the number of digital and analog
I/Os that the physical PLC inside your chosen CP system has.

Hardware configuration IO tags

You can freely name your inputs and outputs, as long as the
address and the type of an input/output is correct.

If you like you can skip the inputs and outputs that are not
connected to anything in your CP system.

Refer to the Festo Didactic Infoportal (https://ip.festo-
didactic.com) for an I/O listing of your CP system. Alternatively,
find the relevant information in your manual or circuit diagram.

Creating the Hardware Configuration and IO Tags in TIA Portal

https://ip.festo-didactic.com/

135

Detailed instructions how to do the hardware configuration in TIA Portal are beyond the scope of this document. Refer to the
courseware ‘Device configuration’ if you’re having trouble.

For this exercise, we’re configuring the PLC as we would a real CP-L-CONV module with a Siemens IO-Link 1.1 conformant RFID device.

1. Create a new TIA project

2. Add a S7-1512SP F-1 PN PLC to your project (6ES7 512-1SK01-0AB0)

3. Add two DI 8x24VDC HF (6ES7 131-6BF00-0CA0)

4. Add two DQ 8x24VDC/0.5A HF (6ES7 132-6BF00-0CA0)

5. Add a CM 4xIO-Link (6ES7 137-6BD00-0BA0)

6. Add a server module (6ES7 193-6PA00-0AA0)

7. Set the IO-Link master’s input/output type to 64/64 and shift the starting I/O addresses to address 10

Creating the hardware configuration

Exercise

136

Creating the hardware configuration

Exercise

137

1. Find the list of I/O addresses for the CP-L-CONV at https://ip.festo-
didactic.com/InfoPortal/CPFactoryLab/hardware/base/datasheet.php?model=CP-L-CONV&lang=en

2. Create a new tag table

3. Enter all tags listed on the Infoportal into your tag table

Note:

Depending on the revision of a physical CP-L-CONV, any address listed on the Infoportal in byte 18 might require to be shifted to byte
42. This is only relevant if you plan to download this TIA project to a real CP-L-CONV. In CIROS the absolute I/O addresses don’t matter.

Setting up the I/O tags

Exercise

https://ip.festo-didactic.com/InfoPortal/CPFactoryLab/hardware/base/datasheet.php?model=CP-L-CONV&lang=en

138

Setting up the I/O tags

Exercise

Note the addresses
are shifted from

18.x to 42.x.

139

1. Open the project properties.

2. On the Protection tab, check Support simulation during block compilation.

3. Compile and download it again. It should work without a problem now

Enabling simulation support

Exercise

140

1. Compile the project.

2. Download it to your simulated PLC.
If Online Access in PLCSIM Advanced is set to PLCSIM mode, this is
almost fully automatic.

Downloading project to PLC instance

.

Exercise

141

The virtual PLC in CIROS has a large number of inputs and outputs, most of which are unused or used for internal processes inside
CIROS. A few virtual I/Os correspond to the I/Os of the PLC inside a real CP system, though. These are named DIN0_x0 to DIN18_x7
and DOUT0_x0 to DOUT18_x7, after the absolute addresses of the real PLC’s I/Os.

Configuring the Interface

CP system you want to program

Virtual PLC inside module

Virtual inputs and outputs

Name of a virtual I/O,
corresponding to %I0.0 in the real
CP module.

I/O address inside CIROS.
Completely irrelevant to your TIA project.

Current value of a virtual I/O. For inputs
these come from simulated sensors. For
outputs, they control a simulated
actuator.

142

You can connect each virtual PLC in your CIROS model to exactly one PLCSIM Advanced instance.

You have to configure our CIROS PLC to connect to the right instance and to hook up the virtual CIROS I/Os to the correct TIA I/Os.

Configuring the Interface

143

Configure your CP-L-CONV model to connect to your instance.

All of this is done in CIROS. TIA doesn’t know anything about the CIROS interface.

1. Open the properties of your virtual PLC (SPS_A)

2. On the PLCSIM Advanced page, select Find instance by name.

3. Enter the name of your PLCSIM Advanced instance

Configuring the interface

Exercise

144

1. Go to the subpage Items

2. Click on Connect

3. Open either the entry that says all or HMI visible,
depending on your preference. The latter only offers
you I/O tags that have been declared as Visible in
HMI engineering inside TIA

4. Under this entry, open I/O

Note that you’re also offered Memory, Counters and
Timers and Data blocks. You can hook up CIROS I/Os
to any of these but in this exercise, we’ll only use I/Os.

Configuring the interface

Exercise

145

Configuring the interface

Exercise

Virtual I/Os of the CIROS PLC

I/O tags configured in TIA

146

1. From the list of I/O tags on the right, drag and drop
each I/O to the matching entry on the left.
Note: Connect CIROS inputs with PLC inputs, and CIROS

outputs with PLC outputs.

2. When done, click “Apply”.

3. Optionally, click “Connect” again to disconnect.

Hint: You can select multiple I/Os from the right if they
are in the right order and drag them to the left at once.

Configuring the interface

Exercise

Drag and
drop

147

1. Click the play button to start the simulation

2. Use TIA to go online / connect to your PLC instance

Run the simulation

Exercise

148

1. In TIA, open your tag list and monitor it

2. Test the connection by clicking on the virtual green start button inside CIROS. You should see the value of %I1.0 change in TIA

Run the simulation

Exercise

Mapping CIROS I/Os to PLCSIM Advanced instance I/Os

More Information

Inputs

Outputs

Inputs

Outputs

Software Hardware

Mapping CIROS I/Os to real PLC via EasyPort and EzOPC

150

More Information

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs

SyslinkUSBOPC DA

151

Once CIROS has established a link to a PLCSIM instance, that instance is bound to the simulation. Only when the CIROS simulation is
running, will the instance run as well.

Should TIA appear to be stuck when downloading to the instance that is likely because your CIROS simulation is paused. As soon as
you start the simulation, the download will continue.

Can’t download project to PLC instance anymore

Common Issues

152

If you’re running CIROS and PLCSIM Advanced on different machines, you need a little bit of
extra configuration.

1. PLCSIM Advanced must use the Virtual Ethernet Adapter

2. The communication interface must be set to the network interface through which you’re
connecting to CIROS

3. The runtime manager port must be enabled. Note the port number written here

Remote Connection between CIROS and PLCSIM Advanced

153

You also have to let CIROS know, where to find PLCSIM Advanced.

1. Go to the virtual PLC’s properties

2. Open the PLCSIM Advanced page

3. Check Activate remote connection

4. Enter the IP address of the PC where PLCSIM Advanced is
running

5. Enter the runtime manager port number that is configured in
PLCSIM Advanced

Remote Connection between CIROS and PLCSIM Advanced

Simulation

• Settings →Model options allows for configuring the way in

which the simulation status will be updated during simulation.

• Mainly characterized by two parameters,

• model computation

• relationship model time / real time

155

Simulation Kernel

1

2

• Simulation increment specifies the intervals in which the

simulation status and its visualization will be updated.

• Default of 0.04s means 25 updates per second of model time.

• Provided that the computer CIROS is running on is powerful

enough, this results in real-time behavior!

• Increasing the Simulation increment leads to fewer calculations

of simulation states which might lead to some strange

behavior.

Rule of thumb: Do not touch the default value for the simulation

increment!

Model computation

156

Simulation Kernel

• Progress preferably in real time

• Progress of model time is restricted to real time.

• Default option, ensuring that a CIROS model behaves like a similar

real CP Lab / Factory system (wrt. process times).

• Allow the skipping of model visualizations

• By default, the visualization gets updated with every simulation

increment.

• Skipping some of these calculations might give CIROS the chance to

keep track with real time.

• Allow the skipping of waiting times

• To keep track with real time, one can also skip simulation updates

when nothing has changed.

Relationship model time / real time (1)

157

Simulation Kernel

• Progress faster than real time (if possible)

• Allows CIROS to simulate as fast as the underlying hardware

environment allows.

• Skipping some visualizations results in even faster computations.

• The speed can be set to adjust how fast the simulation should be in

Model visualization after __ simulation increments …

• For example, to simulate 5x faster than real time, configure it as

follow: Model visualization after 5 simulation increments …

Relationship model time / real time (2)

158

Simulation Kernel

• Progress slower than real time

• Mainly for debugging purposes.

Relationship model time / real time (3)

159

Simulation Kernel

160

Remarks

Simulation Kernel

• Timestamps in CIROS are based on model time, while in MES4 timestamps are based on real time!

• Example of what could happen if model time differs from real time.

• Assume that a single step of an MES4 workplan takes 10s of real time on a corresponding real application module.

• If CIROS is keeping track with real time (model time = real time), the step will be simulated in 10s of real time, too.

• If CIROS is running faster, this step still requires 10s of model time, but CIROS can simulate that 10s of model time in (to give an

example) 2s of real time. MES4 will record that the operation required only 2s of real time!

• Therefore, if CIROS is simulating faster/slower than real time the process times the MES4 is measuring are no longer reliable!

• Due to the different ways of measuring time, it is not possible to simulate the annual production of a CP Lab / Factory within a few

hours!

161

Disabling shadow simulation

Reduce Simulation Computing Requirement

• Calculating shadows during simulation allows for a more natural appearance of the model but requires a lot of CPU/GPU

performance. Simulation might slow down significantly!

• For less powerful hardware environments disabling shadows improves overall simulation performance.

• Screen Space Ambient Occlusion (SSAO)

• Shadow light sources

162

Screen Space Ambient Occlusion (SSAO) (1)

Reduce Simulation Computing Requirement

• SSAO is a computer graphics technique for efficiently approximating the ambient occlusion effect, caused by ambient lightning, in

real time.

• While the implementation in principle is quite fast, it nevertheless requires substantial computation power.

without SSAO with SSAO

163

Screen Space Ambient Occlusion (SSAO) of a model (2)

Reduce Simulation Computing Requirement

• Use Model Explorer →Model → Lightning → Ambient light → Properties to disable or enable Screen Space Ambient Occlusion.

1

2

164

Shadow light source 1

Reduce Simulation Computing Requirement

• Usually, light source 1 is causing shadows, while light sources 2 to 7 and headlight do not have that option

• If enabled the simulation of that shadow depends on the position of light source 1 and its properties

without shadows caused by light source 1 including shadows

Position & direction of
light source 1

165

Shadow light source 1 of a model

Reduce Simulation Computing Requirement

• Use Model Explorer →Model → Lightning → Light source 1 → Properties to disable or enable shadow simulation.

1

2

• Disabling shadows like shown on the slides before is valid for a

particular model only!

• To disable or enable shadows regardless of the model use

File → Application options → Display.

SSAO and shadow source of CIROS application.

166

Reduce Simulation Computing Requirement

• Simulation is controlled by the chosen controller in the project and its code, whether

PLC controller or robot program, can be traced during the simulation.

1. The function can be activated in Programming → Project Management.

2. To enable or disable tracing of a particular controller, check the option Code

sequence trace for the controller.

3. To enable or disable tracing of all controllers in the project, right click on Controllers

and choose the option.

167

Code Sequence Trace
1

2

3

• Depending on the model options, measured range and values

are not visualized by default in view window.

• Displaying sensors can be achieved by configuring Settings →

Model options → Display → Sensors

• Measured value depends on the sensor type

168

Visualising Sensor Data

Light barrier Obstacle detected

Distance sensor Distance to obstacle

Colour sensor Colour

• In rare cases one must enable the visualization of sensor data

by modifying the properties of each individual sensor.

169

Visualising Sensor Data

Sensor visualisation off Sensor visualisation on

• Data logging in CIROS allows for storing and visualization of values of inputs, outputs, variables, etc. during simulation.

• Example shown here: Visualization of the time needed for performing a status update.

• Configuration of data logging is available at Settings →Model options → Logging.

170

Data Logging

1

2

3

4

171

Simulation speed restricted to real time

Data Logging

Almost all the 40ms the
simulation is waiting to
avoid being faster than
real time.

Time required for
updating the simulation
status is almost zero in
this setup.

172

Simulation speed as fast as possible without manual working place

Data Logging

Time required for
updating the
simulation status.

without SSAO
shadows

without both, SSAH
and light source 1

shadows

• Apart from default data logging profiles, it is possible to log own data to simulate

the model built.

• To log own data, a logging profile containing desired data must be created, it can be

created in Settings →Model Options → Logging → Profiles.

1. In section Profile, select New…

2. Give a Name.

3. Use the filter option to filter the selection.

• Possible data are robot positions, joint coordinates and IOs of the objects.

4. Use the arrow buttons to select and deselect data.

5. Finally, click Apply to create the profile.

• Profile created can then be added to logging window in Settings →Model Options →

Logging, section General.

Create new profile

173

Data Logging

1

2

3

4

5

• Located in <project file>\CF\CPSystems.

• Scripts can be opened in CIROS in project management

window.

• Programming → Project management

• Main simulation controller.

• Communicates with MES4 and Fleet Manager.

• Control the model movements.

• Read input values and write the output values.

• Note: RFID data structure in CIROS is different from in real

system.

• Located in <project file>\CF\py.

• Translate MES4 part number to CIROS part number.

• Replicates workpieces and boxes.

• Send string requests to MES4

Industrial Robotic Language (IRL) Python

174

Simulation Control in CP System

175

CP System Simulation Controller

A project is assigned
to the controller.

Project information.

A project contains different controller scripts.
Main program is called cyclically and
sub programs are called in main program.

Python

177

Python in Model Libraries

• Python 3.7 or higher is required for the support of CP Lab / Factory model library.

• Replication of CP Lab / Factory workpieces within CIROS is based on various Python scripts, compared to previous versions this

change within the CIROS kernel simplifies the integration of user defined workpieces.

• If not already installed, CIROS installation wizard will install Python and add it to Windows path during the setup in silence mode.

• In case Python in removed…

• Due to various reasons, like uninstallation of other applications in the same PC, Python can be uninstalled or removed from

Windows path.

• In this case, CIROS will throw an error, most commonly cirospluginpython.dll not loaded.

• When this happens, user should check whether the correct Python version is installed and is it in the Windows path.

• To define Python in System Environment Variable Path in Windows 10:

1. Open System Properties.

Menu → Settings → System → About → Advanced System Settings

2. Open Environment Variables.

Advanced → Environment Variables

Adding python to Windows path (1)

178

Python in Model Libraries

3. Edit Variable Path in System Variables.

System Variables → Path → Edit

4. Insert the path to Python and Python Scripts folder here.

For example: C:\Program Files \Python 38\ and C:\Program Files \Python

38\Scripts\

5. Restart the computer.

Adding python to Windows path (2)

179

Python in Model Libraries

• When different python versions are installed in the same

computer, CIROS always selects the version on top of the

Windows environment path list.

• When the version on top of the list is not supported by CIROS,

there will be an error.

• Typical error message is “cirosPluginPython.dll not loaded”.

• Steps to solve this problem

1. Open Windows Environment Variable.

2. Edit System variables.

3. Move the python with correct version up to the top.

180

Python Installed but Not Working

• CIROS v7 and above works with Python scripts. The scripts can be called for following purposes

• Creation and modification of model.

• Controller for simulation or components.

• Define user defined commands in context menu.

• There is an integrated python module for CIROS, “Ciros”

• Overview of the functions in the module can be called from Menu → Extras → Python → Show function list

• In CIROS 7.1, there are currently 19 classes and 275 commands

• Example models can be found in C:\Program Files\Festo Didactic\CIROS 7.0\CIROS Studio\Example Models\Help\Python

• Requirements

• Python 3 is installed

• Supported versions are 3.6, 3.7, 3.8 and 3.9

• The used version will be chosen automatically

• First line in python function list states the version used.

Note:

• Python must be defined in windows PATH-variable.

• The script cannot contain endless loop.
181

Python Scripts

182

Python scripts can be executed by following methods

Python Scripts

1. Manually

• Application script (Concurrent or blocking)

• With or without simulation

• Menu Extras → Python → Execute

2. By a trigger during simulation

• Simulation script (Blocking)

• Parameters

• Element: Specify the element that calls the script.

• Trigger: Specify event that trigger the call.

• File: The script to be called.

• Function call: Function in the script to be called. Optional.

• Output: Defines whether outputs should be written in message window or not.

3. Python controller

• Controller script (Concurrent)

• A controller object, e.g. simulation controller is required.

1

2

3

2

1. Concurrent
• The python script is executed while CIROS is running.

• This execution type is required for scripts containing GUI elements.

2. Blocking
• First, CIROS is interrupted. Then, the python script is executed up to

its end. Finally, CIROS is resumed.

• This execution type is required for scripts containing special

commands e.g. 'muteGUI'.

1. Simulation script
• Invoked by a trigger during simulation.

• The execution type is 'blocking'.

2. Controller script
• Invoked upon simulation start. Acts as a controller for a specific

object.

• The execution type is 'concurrent'.

3. Application script
• Invoked by a menu command or a command line argument. The

execution type can be chosen by the user.

• Please use #CIROS pragma: blocking or #CIROS pragma: concurrent
in the first line of your script.

Execution type Call type

183

Python Scripts

1. Show the function list by clicking Menu → Extras → Python → Show function list.

2. Copy the function list and paste it in an editor, for example ‘Notepad++’.

184

Built-In Function List

185

CP System Construction Helper

• A python library contains of four classes.

• Note: This library does not come in default with the installation. It might be found in the CIROS project configured by Festo Didactic

in folder python. If it is not found, please contact us to request for it.

Class Explanation

CPFactoryConstructionHelper Constructs a single line of CP-Factory base modules from left to right.

CPLabConstructionHelper Constructs a single island of CP-Lab modules from left to right, base modules and corners must be added in
the correct order, build order is from left to right.

CPRobotinoConstructionHelper Construct Robotino and related modules

CPSystemConfigurationHelper This can be used to change the configuration of certain modules. Please note that u need to give the correct
object name as it appears in the model, for example CP-L-BRANCH_1 for the second added branch module.

186

Tutorial: Send robot TCP to a TCP/IP server.

Use Case: Common TCP/IP Communication

• At the end of this tutorial, user is able to get a robot TCP in joint coordinate and send it to an external TCP/IP server using common

TCP/IP communication protocol with a python script.

• The example will be demonstrated with a CP-F-RASS_Mitsubishi modell.

1. Insert CP-F-RASS_Mitsubishi model in CIROS.

2. Create a python script named TcpIpClient.py.

3. Program the script as shown in next page.

4. Start a TCP/IP server.

Example: With open source software ‘Hercules’.

5. In CIROS, select Extra \ Python \ Execute.

6. Select the python script.

7. Cartesian coordinate is received in the server.

8. Send a reply to close the connection.

187

Use Case: Common TCP/IP Communication

#CIROS pragma: concurrent

import Ciros2 as ciros

import CirosUtil

import socket

def TcpIpClient(msg):

HOST = "127.0.0.1"

PORT = 9000

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

s.connect((HOST, PORT))

s.sendall(msg.encode('utf-8'))

data = s.recv(1024)

print(f"Received {data!r}")

def robotTCP():

rass = ciros.Object('Montage_RV-4FL') #Find the object

flange = rass.getGripperpoint('Flange') #Find the gripper

coord = flange.getFrame(origin='OBJECT').getTranslation() #Get translation

coordinate of gripper / TCP of robot

return str(coord)

TcpIpClient(robotTCP())

Python script

188

Use Case: Common TCP/IP Communication

OPC UA Interface

1. Change controller object type to OPC UA client.

1. Select the object in Model Explorer.

2. In Properties window, select General → Object type.

3. First, change object type to inactive object to clear filter.

4. Then, all the available object types will be shown, select OPC UA

client.

2. Change controller control to Simulation controller.

190

CIROS as OPC UA Client

1.1

1.2

1.2

1.3

1.4

2

1. In Properties → OPC-UA-Client, search for the endpoint of OPC UA

server.

1. If endpoint did not change, you can type the URL directly in the field.

2. Expand OPC-UA-Client and select Items.

3. Click on Connect.

4. Assign the OPC UA nodes in server to the internal IOs.

5. Select Apply.

191

CIROS as OPC UA Client

1

1

2

3

4

5

1.1

Robot Programming

Mitsubishi

Type Articulated robot

Number of axes 6

Ultimate load 4 kg

Maximum reach radius 649 mm

Movement range 480° / 240° / 164° / 400° / 240° / 720°

Maximum composite speed 9048 mm/s

Cycle time 0.36 s

Position repeatability ± 0.02 mm

Weight 41 kg

Tool wiring 8 I/O

Protection rating IP67

Electric RV-4FL robotic arm

193

Mitsubishi Industrial Robot

Base

J1-axis

J2-axis

J3-axis

J4-axis

J5-axis

J6-axis

Upper
arm

Lower arm

Elbow
block

Wrist
joint

Gripper flange

Programming language MELFA-BASIC-V

Number of programs 512

Positions / program 3900

Programming Teach box / PC

Power supply Single-phase 180 – 253 V AC

Interface RS422 / ethernet / USB / digital
I/O

Dimensions (H x W x D) 430 mm x 425 mm x 174 mm

Weight 16 kg

Protection rating Ground position / IP20

Robot controller CR750-D

194

Mitsubishi Industrial Robot

Menu navigation
(language)

German, English, French, Italian

Features Operating, programming and monitoring all robot features

Programming and
Monitoring

Reading out information even during the running system;
Programming using a virtual keyboard;
Display of up to 14 lines of programming code;
I/O Monitoring of up to 256 inputs and 256 outputs;
Maintenance display of service intervals;
Trouble indication of the last 128 alarms

Display Touchscreen with background lighting 6,5" TFT display
(640 x 480 pixel), 65536 colours

Interface USB, combined RS422 and ethernet interface

Connection Direct connection to the robot controller, cable length 7m

Protection rating IP65

Weight 1,25 kg

Teach box R56TB

195

Mitsubishi Industrial Robot

196

Layout and Windows

Model window

Programme window

Position list window

• RASS stands for Robot ASsembly Station.

• It is possible to simulate the Mitsubishi robot program in CIROS

environment.

• The robot program requires several input parameters, which usually

comes from MES4 or PLC. For standalone robot simulation in CIROS, user

has to provide the input parameters manually.

• Following are the input parameters are required for standalone CIROS

robot simulation:

1. Program number.

• Program 1 : Assemble PCB

• Program 2 : Assemble PCB and front fuse

• Program 3 : Assemble PCB and rear fuse

• Program 4 : Assemble PCB and both fuses

2. Position in box.

Robot simulation

197

CP-F-RASS

198

General information

CP-F-RASS

• Attention: General knowledge of Mitsubishi robot and robot programming are required to proceed in this chapter. Please be

informed about Mitsubishi robot program structure, programming language, and I/O connections before proceeding.

• The robot programs are written in Melfa Basic V (MBA5) with extension .mb5, which is the programming language of Mitsubishi

robot.

• Positions are stored in the position list with extension .pos.

• There is a robot project in CP-F-RASS model, which have the same programs as in actual robot. However, the I/O channels and tool

changing mechanism are modified to suit the modelling environment.

• In CIROS simulation, a main program RobotSystemDriver.mb5 is used to simulate the slot allocation in actual robot controller.

• Generally, a program name can be any string characters. However, PLC only calls the program by integers. To allow the new program

to be able to function in real robot, the program name should be numbers.

RobotSystemDriver.mb5 Main program. Assign subprograms to slot.

999.mb5 Reset robot

1.mb5 Assemble PCB to front cover

2.mb5 Assemble PCB and front fuse to front cover

3.mb5 Assemble PCB and rear fuse to front cover

4.mb5 Assemble PCB and both fuses to front cover

5.mb5 Demo program. Assemble and disassemble PCB in front cover.

123.mb5 Check all positions in PCB box. Assemble and disassemble all PCBs in box.

234.mb5 Camera test program. Pick front cover from stopper, place to vision field and run camera. Repeat
four times.

255.mb5 Calculate positions in box based on four positions taught

ENERGSAVEVACU.mb5 Switch on vacuum gripper when workpiece is loose

GETCAMRESULT.mb5 Get camera result

GETCURTOOLNO.mb5 Get current tool number

GETFUSEMAGNO.mb5 Get fuse magazine number

GRPCLOSE.mb5 Close gripper

GRPLOCK.mb5 Lock the gripper to robot arm flange

GRPOPEN.mb5 Open gripper

GRPRELEASE.mb5 Release gripper from robot arm flange

Programs list

199

CP-F-RASS GRPVACOFF.mb5 Switch off vacuum gripper

GRPVACON.mb5 Switch on vacuum gripper

INITIALIZE.mb5 Initialize input and output variables

MONITORHOME.mb5 Check if robot arm is at home position

MONITORPALWS.mb5 Check if robot arm is at PCB box position

MOUNTBOTFUSE.mb5 Mount rear fuse

MOUNTPCB.mb5 Mount PCB to front cover

MOUNTTOPFUSE.mb5 Mount front fuse

MOVHOME.mb5 Move robot arm to home position

PCBTRAYCNTRL.mb5 Check PCB box lock signal and PCB position count

PICKFRMSTOPR.mb5 Pick workpiece from stopper

PICKFRMVISION.mb5 Pick workpiece from vision field

PICKFUSFRMAG.mb5 Pick a fuse from fuse magazine

PICKNEWTOOL.mb5 Pick a new gripper

PICKPCBFRPAL.mb5 Pick PCB from PCB box

PICKWPFROMASS.mb5 Pick workpiece from assembly position

PLACETOSTOPR.mb5 Place workpiece to stopper.

PLACETOVISION.mb5 Pick workpiece from stopper to vision field

SENSORCHECK.mb5 Check sensors at stopper, assembly position, fuse magazines and input parameter for PCB position
in box.

SENSORCHECK1.mb5 Check sensors at stopper, assembly position and input parameter for PCB position in box.

SENSORCHECK6.mb5 Check sensors at stopper position

UBP.mb5 User base program. Global program contains all global variable, flags and positions.

• Station CP-F-RASS has two controllers,

• PLC controller

• Robot controller

• In CIROS, the station has two controllers as well.

• SPS_Roboter is the virtual representation of PLC controller

• Montage_RV-4FL is the virtual representation of robot

controller

• The I/Os are linked internally in CIROS model.

Montage_RV-4FL Index Type SPS_Roboter Index Type Description

I_Stop 100 DI DOUT_100_x0 40 DO Stop robot
program

I_Start 101 DI DOUT_100_x1 41 DO Start a robot
program

IDATA_(0-15) 116 –
131

16 Bit
DI

AOUT_W102 002 AO Program
number in
binary

DI_PCBPalletNo_(0-7) 172 –
179

8 Bit
DI

AOUT_B109 004 AO Position in
PCB box

HOpen_1 900 DO Open
gripper

HClose_1 901 DO Close
gripper

HOpen_3 904 DO Release
gripper

HClose_3 905 DO Lock gripper

Controllers and I/Os

200

CP-F-RASS

201

Grippers’ tool number

CP-F-RASS

• Each gripper has a tool number. It is important to select the right tool as different TCP is used for different tools.

• Tool 1 : Vacuum gripper.

• Z-offset relative to flange TCP 205 mm.

• C-rotation relative to flange TCP 33.5°.

• Tool 2 : Parallel gripper for front cover.

• Z-offset relative to flange TCP 170 mm.

• C-rotation relative to flange TCP 33.5°.

• Tool 3 : Parallel gripper for fuse.

• Z-offset relative to flange TCP 151.5 mm.

• C-rotation relative to flange TCP 33.5°.

• Tool 4 : No gripper.

• Z-offset relative to flange TCP 0 mm.

• C-rotation relative to flange TCP 0°.

No Definition Position

1 P_AssemblePCB (-140.03,-367.01,109.01,-179.73,0.09,89.95)(7,0)

2 P_PCBPalletOrigin (93.00,276.00,213.00,-180.00,0.00,90.00)(7,0)

3 P_PCBPaletXDir (-140.10,276.00,213.00,-180.00,0.00,90.00)(7,0)

4 P_PCBPaletYDir (93.00,398.00,213.00,-180.00,0.00,90.00)(7,0)

5 P_PCBPaletXYDir (-140.10,398.00,213.00,-180.00,0.00,90.00)(7,0)

6 P_CarrierStop1 (402.50,-267.00,171.50,179.73,-0.09,90.05)(7,0)

7 P_Vision (30.00,-350.00,101.50,180.00,-0.00,90.00)(7,0)

8 P_AssembleWp (-139.00,-362.00,114.00,-180.00,-0.00,90.00)(7,0)

9 P_AssembleFuse1 (-138.97,-401.18,127.13,-180.00,0.00,180.00)(7,0)

10 P_AssembleFuse2 (-138.97,-388.18,127.13,180.00,-0.00,180.00)(7,0)

11 P_FuseMagazine1 (-300.65,-430.30,160.30,177.86,-42.56,-177.96)(7,0)

12 P_FuseMagazine2 (-299.24,-360.21,159.46,177.87,-42.57,-177.96)(7,0)

13 P_FuseMagazine3 (-299.44,-290.40,159.99,177.87,-42.57,-177.96)(7,0)

14 P_GrpStorageVac (-395.65,-125.00,484.90,-180.00,-0.00,-0.00)(7,1)

15 P_GrpStorageWp (-395.65,0.00,484.90,-180.00,0.00,0.00)(7,1)

16 P_GrpStorageFuse (-395.65,125.00,484.90,-180.00,-0.00,-0.00)(7,0)

List of default positions in CIROS environment for reference

202

CP-F-RASS

2

3

4

5

6

7

11 12 13

14 15 16

1

8

9 10

1. Create a new CIROS project.

2. Insert and snap following from CP System model libraries.
1. CP-F-RASS (Mitsubishi)

2. CP-F-SOURCE

3. CP-F-SINK

3. Optional: Hide safety glass.
1. In Model Explorer, choose Objects → CP-F-RASS_Mitsubishi→ Geometrie →

Geometrie_Umhausung

2. In Properties, select Visualization.

3. Click Invisible.

4. Open robot program in project management.
1. In Project Management, right click on Projects and select Open.

2. Select <project folder>\CF\Rob_Montage\RV-4FL\Montage_RV_4FL.prjx.

3. In Project Management, select Controllers →Montage_RV_4FL

4. Assign project Montage_RV_4FL to the controller.

5. Assign required I/Os to IO monitor.
1. Open an I/O monitor window, it can be any I/O monitor.

2. Drag the Outputs from Model Explorer to I/O monitor window.

3. Required Outputs are in Objects → CP-F-RASS_Mitsubishi → SPS_Roboter

→ Outputs
1. AOUT_W102 (analogue 002): robot program

2. AOUT_B109 (analogue 004) : position in PCB box

6. Change source part number to 210.
1. In Model Explorer, select CP-F-SOURCE.

2. In Properties → CP System, change Part Number to 210.

Note: The configured model can be saved as a template which can be

opened with CIROS Studio and Education in robot programming lessons.

Video tutorial: 51_ConfigureRASSForRobotProgramSimulation.mp4

203

Steps to configure CP-F-RASS for simulation

204

Steps to simulate CP-F-RASS

1. Optional: To reduce computing power, close all windows except model window and I/O monitor, e.g. Model Explorer, Properties,

Project Management, etc.

2. Start simulation.

3. Give a robot program and position in box in I/O monitor and activate override.

1. For example: robot program 1 and box position 3.

• AOUT_W102 = robot program → Value = 1

• AOUT_B109 = position in box → Value = 3

5. Press on green source button in model window.

6. Observe the program.

• To run another robot program, repeat step 3 to 6.

• To restart simulation, repeat step 2 to 6.

Video tutorial: 52_SimulateRASSRobotProgram.mp4

205

Simulate Real Robot Program in CP-F-RASS Model

• It is possible to simulate real CP-F-RASS robot program in CIROS.

• However, the program has to be modified to suit the simulation environment, for example, the I/Os address and tool changing

mechanism.

• Besides, the simulated program does not connect to a camera. Thus, the subprogram which connects with camera has to be

commented out.

• The modified robot program can be saved as a template project and be used repeatably in robot programming classes as it is

portable with both CIROS Studio and CIROS Education.

Ready to use project: CP-F-RASS_RobotProgramming_v717

1. Create a new CIROS project.

2. Load and snap following models in place from CP System model

libraries.
1. CP-F-RASS (Mitsubishi)

2. CP-F-SOURCE

3. CP-F-SINK

3. Change Part Number of CP-F-SOURCE to 210.

4. Place all the real robot programs in a single folder and place the folder

in CIROS project folder.

5. In the folder, delete following files.
1. Files with type .bak.

2. Files with type .prjx.

6. Copy following files from <project folder>\CF\Rob_Montage\RV-4FL to

the robot program folder.
1. RobotSystemDriver.mb5

2. Montage_RV_4FL.prjx

3. ENRGSAVEVACU.mb5, if not exist

4. MonitorHome.mb5, if not exist

5. MonitorPalWS.mb5, if not exist

6. PCBTrayCntrl.mb5, if not exist

7. In CIROS, open Project Manager, open the copied project

Montage_RV_4FL.prjx in robot program folder and assign it to

controller Montage_RV-4FL.

8. In Project Manager, open Projects →Montage_RV_4FL (MBA5) → Files

and delete the files which do not exist.

Steps to modify robot program (1)

206

Simulate Real Robot Program in CP-F-RASS Model

9. In CIROS, change the following in all files in the project.

1. Bits and bytes in I/O definitions

2. Tool changing mechanism

3. Make following changes.

1. Add following lines in 999.mb5.

P_tGripperVac=(0,0,205,0,0,33.50)

P_tGripperWP=(0,0,170,0,0,33.50)

P_tGripperFuse=(0,0,151.5,0,0,33.50)

P_tGripperNone=(0,0,0,0,0,33.50)

2. Comment out or delete all position declarations in UBP.mb5 and add following lines.

Def Pos P_tGripperVac

Def Pos P_tGripperWP

Def Pos P_tGripperFuse

Def Pos P_tGripperNone

3. Change following positions to reference positions in UBP.pos. The location of tool
magazine in CIROS model is different from actual robot. Thus, the offsets are too large to
be ignored.

P_GrpStorageVac = (-395.65,-125.00,484.90,-180.00,-0.00,-0.00)(7,1)
P_GrpStorageWp = (-395.65,0.00,484.90,-180.00,0.00,0.00)(7,1)
P_GrpStorageFuse = (-395.65,125.00,484.90,-180.00,-0.00,-0.00)(7,0)

4. Comment out or remove all lines calling camera related subprograms, for example the
line calling GetCamResult in program 1 to 5.mb5.

REM CallP "GetCamResult", CamPrgNumber%

10. Save all and compile the project.

Steps to modify robot program (2)

207

Simulate Real Robot Program in CP-F-RASS Model

From To From To From To

2032 132 2072 172 2148 248

2033 133 2144 244 2150 250

2040 140 2147 247 2151 251

2064 164

From To

M_Tool = m_GripperFuse Tool P_tGripperFuse

M_Tool = m_GripperNone Tool P_tGripperNone

M_Tool = m_GripperVac Tool P_tGripperVac

M_Tool = m_GripperWP Tool P_tGripperWP

HOpen 6 HOpen 3

HClose 6 HClose 3

208

Robot programming example ‘gripper test’ (1)

CP-F-RASS Robot Programming

• The program is independent of all the other robot programs, but uses positions in UBP.pos.

• It is written in MBA V and does the following.

1. Move robot arm to home position.

2. Move robot to parallel workpiece gripper magazine.

3. Mount the gripper.

4. Remove gripper from magazine.

5. Open gripper.

6. Close gripper.

7. Store gripper back to magazine.

8. Move robot arm back to home position.

Note: For more programming example, see tutorial video: 50_RASS-Programming.mp4.

1. Create a CIROS project and load CP-F-RASS from CP System model libraries.

2. Make sure a project is assigned to controller Montage_RV-4FL and UBP.pos is in

the project.

3. In Project Management, right click on Projects → <project name> → Files and

choose new.

4. Create a Melfa Basic V program and name it RASS-GripperTest.mb5.

5. With the programming window being the active window, select Programming →

Programming assistant.

6. Uncheck Declare inputs and outputs and click OK.

7. In the programming window, add the lines shown in right.

8. Save the program.

9. In Project Management, right click on the program and select Set main program.

10. Compile the project.

11. Run simulation.

' TODO add your code here

' Move to home position

MOV P_Home

DLY 1

' Mount parallel workpiece gripper

MOV P_PCBPalletHelp

MOV P_GrpStorageWp, -30

JOVRD 50

MVS P_GrpStorageWp

HClose 3

MVS P_GrpStorageWp + P_ToolX80

DLY 1

' Open and close gripper

HClose 1

HOpen 1

DLY 1

HOpen 1

HClose 1

DLY 1

Robot programming example ‘gripper test’ (2)

209

CP-F-RASS Robot Programming

' Store gripper back to magazine

MVS P_GrpStorageWP

HOpen 3

' Move back to home position

MVS P_GrpStorageWp, -30

JOVRD 100

MOV P_PCBPalletHelp

MOV P_Home

END

210

Move Robot Manually

• There are several ways to move robot manually in CIROS.

1. Move the robot directly to a position on position list.

• Double click on the position.

2. Double click on any location in model window.

211

Move Robot Manually

3. Move the robot with Teach-In panel.

• Gripper can be controlled in section Gripper output.

• In some system, for example, CP-F-RASS, TCP changes relative

to the gripper.

• Steps to mount a gripper manually with example CP-F-RASS

model.

1. Select <Automatic TCP>.

2. Move the robot arm to the tool position.

3. In Teach-In panel → Gripper output, close HClose_3.

4. Start simulation (F5).

5. Stop simulation (F5).

6. The gripper is mounted.

• Steps to release a gripper manually with example CP-F-RASS

model.

1. Move the robot arm to the desired position.

2. In Teach-In panel → Gripper output, open HClose_3.

3. Start simulation (F5).

4. Stop simulation (F5).

5. The gripper is released.

212

Mount and Release a Gripper Manually

• TCP path of robot movement can be monitored.

• Active TCP tracking from View → TCP tracking.

213

TCP Tracking

214

View TCP Coordinate

• Joint coordinate and cartesian coordinate of the active TCP can be monitored.

• The room that TCP can reach.

• Activate at View → Robot workspace.

215

Robot Workspace

• Collision detection can be activated.

• In collision detection mode the movements are always

incremental.

• It is useful in testing a new robot program to avoid collision.

216

Collision Detection

1. Assign group. Collision is only detected when elements in deferent

groups cross each other.

1. Select Settings → Collision detection.

2. In Collision Detection window, select Manage collision groups.

3. Assign content to Roboter group.

4. Assign content to Rest group.

Configuration (1)

217

Collision Detection

2. Assign the collision group pair.

1. Close Manage collision groups window.

2. Select Roboter as group 1 and Rest as group 2.

3. Move the pair to the right to activate it.

4. Select OK.

Configuration (2)

218

Collision Detection

219

Activate simulation

Collision Detection

1. Select Simulation → Collision detection.

2. Move the robot against an object and observe the simulation.

220

Connect to Robot Controller

Communication interface

• Ethernet cable

• TCP/IP protocol

• IP-Address and Port

LAN Port

Only CIROS Studio

221

Check the Ethernet Cable

Please check the ethernet connection between robot controller and the computer.

Only CIROS Studio

1. The IP-address can be read from robot teach box (TB).

2. Exit everything until home page.

3. Press F1 to enter menu.

4. Select 3.PARAM.

5. Search for parameter NETIP. Read the IP-address.

Find the IP-address from R32TB

222

Connect to Robot Controller
Only CIROS Studio

1. The IP-address can be read from robot teach box (TB).

2. Select “Parameter” from the menu.

Video Tutorial: 53_FindMitsuIpR56TB.mp4

3. Click on “Parameter name” to search for parameter “NETIP”.

4. Key in “NETIP” and click “Enter”.

5. IP Address is shown.

Find the IP-address from R56TB

223

Connect to Robot Controller
Only CIROS Studio

1. Open network adapter properties.

2. Select Internet Protocol Version 4 (TCP/IPv4).

3. Select Properties.

4. Change the IP address to the same network as robot

controller.

Change the IP-address of the computer to the same network

224

Connect to Robot Controller
Only CIROS Studio

Connect to Robot Controller

Set robot controller to Automatic and switch of teach mode.

225

Only CIROS Studio

1. Create a new CIROS project.

2. Insert “CP-F-RASS_Mitsubishi” from Festo CP System model

library.

Video tutorial: 54_InsertCP-F-RASS.mp4

3. Optional: To hide robot housing, in Model Explorer, select

“Geometrie\Geometrie_Umhausung”. In

Properties\Visualization, select “Invisible”.

Video tutorial: 56_HideHousing.mp4

Insert CP-F-RASS model

226

Connect to Robot Controller
Only CIROS Studio

1. In Model Explorer, select “CP-F-RASS_Mitsubishi\Montage_RV-4FL”.

2. In properties window, select Communication.

3. Select TCP/IP as connection type.

Video tutorial: 57_ConnectMitsuRobot.mp4

4. Expand Communication in properties window and select TCP/IP.

5. Enter the IP-address of the robot controller.

6. Port = 10001

Configure communication setting

227

Connect to Robot Controller
Only CIROS Studio

228

Connect to Robot Controller

RCI-Explorer

• RCI = Robot Control Interface

• Allow user to read information, program and control the robot controller in CIROS.

• Can create / load robot controller backup.

• Edit the program by uploading the robot program into local workspace.
Online /
Robot controller

Offline / Local

Only CIROS Studio

229

Connect to Robot Controller

Open RCI-Explorer

• Select Extras > Online management > RCI explorer…

Only CIROS Studio

1. In RCI Explorer, right click on Connection and select Connect.

2. Please pay attention to the security advice and environment of real

robot!

3. Select OK when the window pops up.

4. Connection is established.

Video tutorial: 57_ConnectMitsuRobot.mp4

Build the connection

230

Connect to Robot Controller
Only CIROS Studio

231

Robot type

Online Information from Robot Controller
Only CIROS Studio

Robot programs

232

Online Information from Robot Controller
Only CIROS Studio

233

Robot programs in slots

Online Information from Robot Controller
Only CIROS Studio

System variables

234

Online Information from Robot Controller
Only CIROS Studio

Parameters

235

Online Information from Robot Controller
Only CIROS Studio

236

Read Live Parameter Value
Only CIROS Studio

237

Error list

Online Information from Robot Controller
Only CIROS Studio

• Sometimes, the window is not updated. In this case, the

windows can be refreshed.

Video tutorial: 58_RefreshRCIWindow.mp4

Refresh window

238

Online Information from Robot Controller
Only CIROS Studio

1. Right click on the robot and select Create backup\All.

2. Create the backup in an empty folder.

2. Confirm the warning.

3. Creating backup…

Video tutorial: 59_CreateRobotBackup.mp4

239

Create Robot Controller Backup
Only CIROS Studio

• By default, backup is located in <project folder>\Backup.

240

Robot Controller Backup Folder
Only CIROS Studio

1. Right click on the robot and select Load backup > All. 2. Select backup folder.

3. Restart the controller after loading complete.

241

Load Backup
Only CIROS Studio

242

Upload Robot Programs

• Robot programs can be uploaded to the computer.

• Uploaded programs are listed in Workplace\Programs.

• The programs can then be edited.

Only CIROS Studio

1. In RCI Explorer, right click on Programs, select Upload all.

2. When this window pops out, click ok.

3. Programs which are running in slots cannot be uploaded. Click ok and

continue uploading the missing programs.

Video tutorial: 60_UploadRobotPrograms.mp4

243

Upload Robot Programs
Only CIROS Studio

• By default, uploaded robot programs are located in <project

folder>\<robot controller name>.

• For example,

• CIROS project : RASS2_717

• Robot name : Montage_RV-4FL

• Uploaded robot programs are located in ..\RASS2_717\Montage_RV-

4FL.

244

Robot Program Folder
Only CIROS Studio

245

Download Program

• Programs in Workspace can be downloaded into robot controller.

1. Select the MB5 program in workspace.

2. Right click and select Download.

Only CIROS Studio

246

Online Teach-In

• Once connected, it is possible to activate online teaching in Teach-In panel.

• Online teaching mode allows

• Simulation of real time robot position in CIROS

• Move the real robot in CIROS

• Track the real robot coordinates in CIROS

1. Activate online teaching.

2. Observe the change in model window.

3. Move Roll coordinate of the robot incrementally 5°.

4. Deactivate online teaching.

5. Reset the model.

Only CIROS Studio

1. Make sure robot controller is online.

2. Open Teach-In panel.
Shortcut: F8

3. Select the robot as active controller.

Video tutorial: 61_RobotTeachIn.mp4

4. At the bottom of Teach-In panel, click on Activate online

teaching.

5. Click ok on pop-up window.

247

Online Teach-In
Only CIROS Studio

Notice the difference between before and after teach in is activated.

248

Online Teach-In
Only CIROS Studio

Ready to use project: robotInfo.py

Video tutorial: 62_RobotInfoPython.mp4

249

Get Actual Robot Data with Built-In Python Function
1

2

3

Only CIROS Studio

Virtual Reality

251

Setting up VR Glasses

• CIROS can be directly connected to VR glasses like HTC Vive and Oculus Rift.

• Typical procedure

1. Install Steam / SteamVR and create a user account (https://store.steampowered.com/)

2. Start Steam and switch to “offline mode” in case that Steam should be used without internet access

3. Start SteamVR and run room setup

4. Configure the VR mode of CIROS

5. Activate VR mode of CIROS and start the simulation

Note: HTC Vive is the only officially supported VR glasses.

Switching between Steam’s online/offline mode

https://store.steampowered.com/

252

Start SteamVR and run Room Setup

Setting up VR Glasses

Name of the application

currently using SteamVR

List of available HTC Vive components (from left to right):

Glasses, controller 1 & 2, left & right base station

Configuration of the (virtual) room

Filled icons represent active components

253

Setting up VR Glasses

Choose “Room-Scale” to be

able to go around in the real

and virtual room

Start SteamVR and run Room Setup

254

Start SteamVR and run Room Setup

Setting up VR Glasses

Calibrate real and virtual floor

(ground level wrt. to z-axis)

255

Start SteamVR and run Room Setup

Setting up VR Glasses

Configuration of the available physical

space to be matched with the virtual room

256

Start SteamVR and run Room Setup

Setting up VR Glasses

Specify the available physical space (its

outer perimeter) by holding the trigger

button of one of the two controllers

257

Start SteamVR and run Room Setup

Setting up VR Glasses

If the available space defined before fits

the “Play Area” it will be highlighted in

green

Direction of the user perspective onto the

SteamVR scene

“EDIT” allows for optimizing position,

size, and user perspective manually

258

Configure VR mode of CIROS

Setting up VR Glasses

1. Select File → Application options.

2. Configure VR devices.

List of available/connected VR sets

Enable VR glasses

“Standing” corresponds to

SteamVR‘s “Room Scale”

“Seated” should be used in cases in which

“Standing Only” has been selected during

SteamVR’s room setup

259

Configure VR mode of CIROS

Setting up VR Glasses

3. Select Settings →Model options

4. Set the simulation increment to 0.011s, since the HTC

Vive can perform 90fps

5. Let the simulation run as fast as possible

6. Switch the standard views to default setting

260

Activate VR mode of CIROS and start the simulation

Setting up VR Glasses

• Enable the connected VR device and start the simulation

• Remark: It is highly recommended to disable all shadow

calculations to have enough computational power for a

“smooth” visualization!

• To interact with the model, for example, click on the buttons,

start and stop simulation, etc. An interactive element has to be

added.

1. Go to “Modelling →Model libraries”.

2. Expand “Interactive elements”.

3. Add “Virtual Reality controller”.

• Note: “Simulation Control” has to be shown in “Model

Window” to be able to control simulation in VR.

Interact with Model

Advanced

1. Open “Model Explorer”.

2. Go to the input to be moved.
MPS Robot Station → Objects →MPSRobotStation → RV-2F → Inputs

3. Right click on destination address, and select “Rename”.

4. Assign a name, note that names of the cannot repeat in the whole

model, add an extension such as “_1” at the end if needed.

5. If the input is connected to an output, it has to be reconnected. Double

click on original address to open it, right click on “Connected output”

and select “Follow connection”.

Example: Moving digital input S1_A from bit 3 to 11 (1)

263

Move I/O Address

6. Now the connected output is shown, select the output, drag

and drop it to the new address to connect them.
In Model Explorer, drag “MPS Robot Station →MPSRobotStation→

Trolley700 → Panel → PushButtonStart→ Outputs → Start” and drop

to “MPS Robot Station →MPSRobotStation→ RV-2F → Inputs →

S1_A_1”

7. Deactivate the old address by right click, select Edit →

Deactivate.

8. Rename the destination input back.

9. Update the programs which use the bit.

Video tutorial: 43_MoveIOs.mp4

Example: Moving digital input S1_A from bit 3 to 11 (2)

264

Move I/O Address

• File → Export enables the user to save the content of the so-called “first” view window as a high-resolution PNG file.

265

Export as High-Resolution Images

1

2
3

4

266

Multiple View Windows

• CIROS is not restricted to a single view window but offers the possibility to show a couple of view windows concurrently.

• To open a new window, select View → New window.

• Each view might have a different perspective onto the scene.

1

2

First / main view window Additional view windows

267

Calling CIROS model with URL

CIROS Starter

Possible action Parameter Explanation

Start simulation StartSimulation Starts the simulation.

Activate full screen ActivateFullScreen Runs CIROS in in full screen mode.

Use single instance UseSingleInstance CIROS uses an existing instance to open the new
model. A new instance is only started if no
instance of CIROS is running yet.

URL format:
“StartCIROS: <path to model>?Parameter1&Parameter2”

Example:
"StartCIROS:Example Models\Small Demos for Learning\Robot Assembly with UR5\Robot Assembly with UR5.modx?ActivateFullScreen&UseSingleInstance"

268

Extras →Model analysis →Whole model

Model Analysis

• Help in problem diagnosis and finding a solution

Note: Picture in German.

269

“PartNrReplikator.py” replicates the part in simulation. “PartNrTranslation.py” translates MES4 part number to CIROS part number.

CIROS Part Number for CP System

Digit 6

Special parts

Digit 5 – 3

Parts

Digit 2

Fuses

Digit 1

Front cover colours

Digit 0

Back cover colours

Pallet 1 Unprocessed front cover 1 Front fuse 1 Black 0 Black 0

Front cover, raw block 2 Front cover 2 Rear fuse 2 Grey 1 Grey 1

Back cover,
not pressed on front cover

3 PCB 4 Blue 2 Blue 2

Turn part 4 Back cover 8 Red 3 Red 3

Boxes 5 Label on front cover 16 Not used 4 Not used 4

Not used 6 Label on back cover 32 Not used 5 Not used 5

Not used 7 Not used 64 Not used 6 Not used 6

Not used 8 Not used 128 Not used 7 Not used 7

Not used 9 Not used 256 Not used 8 Not used 8

Example: see picture
0 2+4+8 1+2 2 3 = 0014323 = 14323

270

Task: Add a MPS Part from CP-L-SOURCE

Create Own Part

• There are some parts supported from CP-System model libraries. It is possible to create own part to work in CP environment in

CIROS.

• User can import the CAD drawing of their parts and test it in virtual environment before implementing it on the real system.

• Steps to create own part will be explained with an example of adding a Festo MPS red housing with RFID and black MPS cap to a

CP-L-CONVEYOR via a CP-L-SOURCE.

Part

number

Part Image

3001 Red MPS housing with
RFID

3002 Black MPS housing with
RFID

3003 Silver MPS housing with
RFID

Part

number

Part Image

3020 Black cap

3080 Cap with integrated micro-
controller

MPS part numbers according to FactoryViews[1]

271

Create Own Part

[1] FactoryViews is the new software bundle for MES and web based services. It contains MES4 v3.

272

Steps to create an own part (1)

Create Own Part

1. Prepare CAD drawing of the parts in supported format. (→)

2. Define MES4 / FactoryViews part numbers. (→)

3. Define CIROS part numbers. (→)

4. In CIROS, create a new project and import the CAD drawing. (→)

5. If needed, optimize the geometry of the CAD drawing to reduce its size and rendering requirement in simulation. (→)

6. Rename the object and configure its properties, such as object type, gripper points and grip points. (→) (→)

7. Define coordinates of gripper points and grip points in the model, so the parts are replicated and snapped in correct place in simulation. (→)

8. Move the configured object to Templates by drag and drop. (→)

9. Insert following CP-System Models from Model Libraries and snap them to place.
• CP-L-CONVEYOR, CP-L-SOURCE and CP-L-SINK

10. Modify following files to add new part numbers.
<project>\CF\py\PartNrTranslator.py (→) and <project>\CF\py\PartNrReplikator.py (→)

11. Modify template “Palette” to allow it to take along new parts during transportation. (→)

12. Add following objects to “Objects →Werkstuecke”. These are the meta objects.
• Housing, Pistons and Caps

13. Save all, close CIROS and restart CIROS. Then, open the project and test the new parts added.

273

Prepare CAD drawing of the parts in supported format.

Create Own Part

• CIROS supported formats are as follow:
• 3ds Max

• AutoCAD DXF

• Autodesk

• Blender

• Collada

• IGES

• PointCloud

• STEP

• STL

• VRML

• Wavefront Object

274

Define MES4 / FactoryViews part numbers.

Create Own Part

Part number Part

1 MPS housing red

2 MPS housing black

3 MPS housing silver

3001 Red MPS housing with piston containing RFID chip

3002 Black MPS housing with piston containing RFID chip

3003 Silver MPS housing with piston containing RFID chip

3020 MPS cap

13001 Red MPS housing + piston + cap

13002 Black MPS housing + piston + cap

13003 Silver MPS housing + piston + cap

275

CIROS part number as defined in “PartNrTranslation.py”

Create Own Part

Digit 6

Special parts

Digit 5 – 3

Parts

Digit 2

Fuses

Digit 1

Front cover / housing
colours

Digit 0

Back cover/cap
colours

Pallet 1 Unprocessed front cover 1 Front fuse 1 Black 0 Black 0

Front cover, raw block 2 Front cover 2 Rear fuse 2 Grey 1 Grey 1

Back cover,
not pressed on front cover

3 PCB 4 Blue 2 Blue 2

Turn part 4 Back cover 8 Red 3 Red 3

Boxes 5 Label on front cover 16 Not used 4 Not used 4

Not used 6 Label on back cover 32 Not used 5 Not used 5

Not used 7 MPS housing 64 Not used 6 Not used 6

Not used 8 MPS piston 128 Not used 7 Not used 7

Not used 9 MPS cap 256 Not used 8 Not used 8

Example: see picture
0 64+128+256 0 3 0 = 0 448 0 3 0 = 448030

276

Import CAD drawing

Create Own Part

1 2

3

277

Optimize geometry

Create Own Part

1. Select the imported CAD object in Model Explorer.

2. Click Modeling → Geometry optimization [1] .

3. Run the required optimizations.

• In the example, following optimizations were carried out.

• Clean up geometry [2]

• Merge hulls with matching material or area color [3]

• Simplify object hierarchy [4]

1

2

3

4

278

Objects’ properties defined in example.

Create Own Part

Part name Meta object Object type Gripper points Grip points

MPS_Housing_rt [1] Housing WS GripPistonRed
GripCapRed

HousingRed

MPS_Housing_sw [2] Housing WS GripPistonBlack
GripCapBlack

HousingBlack

MPS_Housing_gr [3] Housing WS GripPistonSilver
GripCapSilver

HousingSilver

MPS_Piston Pistons WS PPiston

MPS_Cap Caps WS CapStackBlackCap

[1] rt = red (German: rot)
[2] sw = black (German: schwarz)
[3] gr = grey, in this case silver (German: grau)

1. Rename the object in Model Explorer.

2. Configure object type.
1. In Properties, select General → Object type.

2. In Change field, type in ‘WS’.

3. Add gripper points.
1. In Model Explorer, right click on MPS_Housing_sw→ Base and select New

→ Gripper point.

2. Rename the gripper points.

4. Configure gripper points.
1. Select gripper point. In Properties →Mechanism, select Type as Take along.

2. Set value of Grip only objects in direct meta object(s) to the object laying in

or on top of the part. Click Apply.

Example: Black MPS Housing, the value is Pistons, Caps. Because these parts lay in

and on top of the housing.

Hint: The value can be written directly in the field below.

Configure object’s properties in CIROS (1)

279

Create Own Part

5. Add grip point.
1. Right click on Base, select New → Grip point.

2. Rename the grip point.

Configure object’s properties in CIROS (2)

280

Create Own Part

• The x, y, z-coordinates of the parts have to match, so that the

parts replicated can be snapped in the right place.

• X, y, z-coordinates in CIROS are highlighted in different colours.

• Coordinates of gripper and grip points can be moved in

Properties → Pose.

Define coordinates of gripper points and grip points.

281

Create Own Part

X

Y

Z

282

Move configured object to Templates.

Create Own Part

• Objects can be moved between ‘Objects’ and ‘Templates’ in Model Explorer by drag and drop.

• “PartNrTranslation.py” translate MES4 part number to CIROS

part number.

• 2D array “PN_by_color” sorts the part by colour.

• List “CirosPN_by_PNsw” translates MES part number to CIROS

part number. Only part number of black part is needed here.

• Attention: Part row of “PN_by_color” must match with

“CirosPN_by_PNsw” for the script to find the correct part!

“PartNrTranslation.py” description

283

Create Own Part

1. Add MES part numbers to “PN_by_color”. 2. Add part numbers to “CirosPN_by_PNsw”.

• Note that the part rows of “PN_by_color” matches

“CirosPN_by_PNsw”.

Add new parts to “<project>\CF\py\PartNrTranslation.py”

284

Create Own Part

• “PartNrReplikator.py” takes the translated CIROS part number

and replicates the part in the model from templates.

• The script also configures gripper points and grip points.

• List “farbe_ID” matches colour ID[1] in “PartNrTranslator.py”

with colour add on at the end of templates name[2].

“PartNrReplikator.py” description

285

Create Own Part

1 2

2

• “bauteil_ID” contains detailed information of each CIROS ID.

• “sonderteil_ID” contains detailed information of CIROS ID

which are declared as special parts.

1. Add new parts to list “bauteil_ID”.

2. In function “replicatePartAt”, under “elif bauteile:”, add “or id

== 64”, to allow colour allocation of MPS housings. At

default v7.1 script it is at line 123.

Add new parts to “<project>\CF\py\PartNrReplikator.py”

286

Create Own Part

1. Move “Palette” from “Templates” to “Objects”.

2. Select “Palette → _347490-d_Palette_110x164mm → Gripper points

→ Bauchlage_Palette”.

3. In Properties window, change the value of “Grip only objects in direct

meta object” to “Frontschalen,Ruechschalen,Housing” and click Apply.

Note: The value can be typed directly in the field below.

4. Move “Palette” back to “Templates”.

Modify template “Palette”

287

Create Own Part

• There are model libraries with a huge variety of models by default. However, these models are encrypted and not editable.

• It is possible to create own libraries, either from scratch or from modified standard model libraries. These libraries created can be

edited from time to time and can also be used as a building block to build own models, just like the standard model libraries.

• In coming tutorials, steps to create own model libraries from modified standard model libraries containing a modified CP-L-

CONVEYOR, CP-L-SOURCE and CP-L-SINK which supports MPS workpiece will be shown. Steps to create MPS workpiece in CP

environment is shown in previous chapter.

• Important! If the library is made from modified standard library, avoid mixing new model library with standard library for an error

free simulation.

288

Create Own Model Library

289

Elements of a model library

Create Own Model Library

• CF.7z

• Textures.7z

• Model

• Model.modx

• Model.png

• Model.ini

• Model.html

• InitModBib.modx

• InitModBib.ini

• InitModBib.fin

290

Steps to create own model library

Create Own Model Library

1. Create CF.7z and Textures.7z.

2. Create InitModBib (*.fin, *.ini and *.modx).

3. Create the models.

4. Link the model library in CIROS.

291

Create CP.7z and Textures.7z

Create Own Model Library

1. In a chosen window’s path, create an empty folder. This will be the new model library folder.

2. In CIROS Studio, create a CIROS model in the folder created above. Name it InitModBib.modx.

3. Add any model from Festo CP System model library.

4. Delete all Materials in Model Explorer.

5. In <project folder>\CF, replace any modified python or irl scripts.

6. Compress following folders with 7-Zip:

1. <project folder>\CF

2. <project folder>\Textures

292

Create InitModBib (*.modx, *.ini and *.fin)

Create Own Model Library

1. Go to CIROS project created (InitModBib.modx).

2. Make sure Model Explorer → Templates contains all the parts required in the new model library.

Note: Import the part as an object to CIROS model and convert it into template if required.

3. Make sure Model Explorer → Objects →Werkstuecke contains all the meta objects required in new model library.

4. In Model Explorer, delete all objects except “Werkstuecke”.

5. In Model Explorer, delete all materials.

6. Save all.

• At the end of this tutorial, a resource consists of a belt with

application module traffic light is created (see picture on the

right) and is able to work together with a CP-L-CONVEYOR.

• The module can work in default mode and MES mode.

• In default mode, red, yellow and green LEDs will light up one

after another.

• In MES mode, the LED configured in MES will light up.

293

Steps to Create own Virtual Machine Communicating with MES4

1. Insert CP-L-CONVEYOR from Festo CP System model library.

2. Insert ModLibs\Conveyors\ConveyorBelt.

3. Delete all Extended properties in Properties\Extended.

4. Add following extended properties.

5. Delete following components in ConveyorBelt.
• LedBackwards

• LedForwards

• LedStopped

• ProfilesTopX

• All inputs

• All outputs

6. Go to Properties\General, select object type as Inactive object.

7. Go to Modelling\Geometry optimization.

8. Select Merge hulls with matching material or area color to optimize

ConveyorBelt.

Steps to create base module.

294

Steps to Create own Virtual Machine Communicating with MES4

Key Value

CT_Type PassiveObject

CT_System TransferFactory

CT_Assembly 1

7. Change the size of ConveyorBelt in Properties\Dimension.
• X = 700 mm

• Y = 120 mm

• Z = 974.50 mm

Hint: Use prepared CAD model “ConveyorBelt.stp” to skip step 2, 3, 5 and

7. Please request the CAD model from Festo Didactic.

10. Copy CP-L-CONVEYOR\SPS_A and paste it under object ConveyorBelt.

The object is renamed to SPS_A_1.

11. Change position of SPS_A_1 in world coordinate.
• X = 350 mm

• Y = 54.55 mm

• Z = 975 mm

12. Copy CP-L-CONVEYOR\Conn1 and Conn2 and paste them under

ConveyorBelt.

Steps to create base module.

295

Steps to Create own Virtual Machine Communicating with MES4

13. Move ConveyorBelt\Conn1 and Conn2 to right and left end of

ConveyorBelt respectively.

14. Select object ConveyorBelt. Go to Properties\Connectors. Add

following connectors and triggers.

Steps to create base module.

296

Steps to Create own Virtual Machine Communicating with MES4

Object coordinate X [mm] Y [mm] Z [mm]

Conn1 0 54.55 975

Conn2 700 54.55 975

15. Go to SPS_A_1\Inputs, connect DIN1_x5 to 1.

16. Open Project Management.

17. Open project <project folder>\CF\CPSystems\CPSystem_Allgemein.prjx.

18. In Controllers\SPS_A_1, assign CPSystem_Allgemein. Do the same for

SPS_A.

19. Right click on Projects\CPSystem_Allgemein(IRL) and compile the

project. Make sure that all projects are compiled successfully.

20. Drag and snap ConveyorBelt to CP-L-CONVEYOR.

21. Base module is created.

Steps to create base module.

297

Steps to Create own Virtual Machine Communicating with MES4

1. In model libraries, insert LEDs and switches\Signal lights.

2. Select SignalLights, in Properties\General, change object type to Work

station.

3. Move origin of SignalLights to middle bottom of the object.

Hint: With help of 3D marker.

4. Change z-coordinate of SignalLights in world coordinate to 975 mm.

5. Add analog output and name it CIROS_App_ID.

Steps to create application module.

298

Steps to Create own Virtual Machine Communicating with MES4

6. Select SignalLights, add following extended property.

7. In CP System model library, add any application module, for example,

CP-AM-MAG_FRONT.

8. Copy CP-AM-MAG_FRONT\AppConn and paste it under object

SignalLights.

9. Move AppConn pose to front middle of object’s bottom plane.

Steps to create application module.

299

Steps to Create own Virtual Machine Communicating with MES4

Key Value

OF OUT_CIROS_App_ID := 24

10. Select SignalLights, in Properties\Connectors, configure connectors

and triggers as follow.

Steps to create application module.

300

Steps to Create own Virtual Machine Communicating with MES4

1. Add app ID to “Applikationen.irl”.

1. In “Project Management\Projects\CPSystem_Allgemein(IRL)\Files”, open

“Applikationen.irl”.

2. In Function “App()”, add following line,

if(applicationID = 24) then return(appSignalLights(mes.Parameter)); endif;

Steps to program virtual machine in IRL

301

Steps to Create own Virtual Machine Communicating with MES4

2. Add function “appSignalLights()” to Applikationen.irl.
FUNCTION appSignalLights(IN ARRAY [1..7] OF REAL: Parameter) : int;
VAR

INPUT BOOL : RedIsOn AT 0;
INPUT BOOL : YellowIsOn AT 1;

INPUT BOOL : GreenIsOn AT 2;
OUTPUT BOOL : RedOn AT -1;

OUTPUT BOOL : YellowOn AT 0;
OUTPUT BOOL : GreenOn AT 1;

REAL : redMES;
REAL : yellowMES;

REAL : greenMES;
BEGIN

RedOn := false;
YellowOn := false;

GreenOn := false;
if(MyResourceId = 0) then

{Standardmode}
RedOn := true;

WAIT 1.0 SEC;
RedOn := false;

YellowOn := true;

WAIT 1.0 SEC;
YellowOn := false;

GreenOn := true;
else

redMES := Parameter[1];
yellowMES := Parameter[2];

greenMES := Parameter[3];
IF redMES = 1 THEN

RedOn := true;
ENDIF;

IF yellowMES = 1 THEN
YellowOn := true;

ENDIF;
IF greenMES = 1 THEN

GreenOn := true;
ENDIF;

endif;

WAIT 1.0 SEC;
RedOn := false;

YellowOn := false;
GreenOn := false;

return (0);

ENDFCT;

Steps to program virtual machine in IRL

302

Steps to Create own Virtual Machine Communicating with MES4

303

Steps to program virtual machine in IRL

Steps to Create own Virtual Machine Communicating with MES4

3. Save the program.

4. Compile the project and make sure that all projects are compiled successfully.

5. A resource with base and application module is created.

Troubleshoot in External Document

CIROS-CP_Troubleshoot_EN_v7.1_xxxxxx.pdf

